forked from morningmoni/HiLAP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
317 lines (283 loc) · 11.7 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import collections
import os
import pickle
import subprocess
import numpy as np
import pandas as pd
import torch
from torch.autograd import Variable
from tqdm import tqdm
def isnan(x):
return x != x
def contains_nan(x):
return isnan(x).any()
def explode(x):
return (x > 10).any()
def eu_dist(x):
return sum((x[0] - x[1]) ** 2) / len(x[0])
def get_gpu_memory_map():
result = subprocess.check_output(
[
'nvidia-smi', '--query-gpu=memory.free,utilization.gpu',
'--format=csv,nounits,noheader'
], encoding='utf-8')
gpu_info = [eval(x) for x in result.strip().split('\n')]
gpu_info = dict(zip(range(len(gpu_info)), gpu_info))
sorted_gpu_info = sorted(gpu_info.items(), key=lambda kv: kv[1][0], reverse=True)
sorted_gpu_info = sorted(sorted_gpu_info, key=lambda kv: kv[1][1])
print(f'gpu_id, (mem_left, util): {sorted_gpu_info}')
return sorted_gpu_info
def save_checkpoint(state, modelpath, modelname, logger=None, del_others=True):
if del_others:
for dirpath, dirnames, filenames in os.walk(modelpath):
for filename in filenames:
path = os.path.join(dirpath, filename)
if path.endswith('pth.tar'):
if logger is None:
print(f'rm {path}')
else:
logger.warning(f'rm {path}')
os.system("rm -rf '{}'".format(path))
break
path = os.path.join(modelpath, modelname)
if logger is None:
print('saving model to {}...'.format(path))
else:
logger.warning('saving model to {}...'.format(path))
try:
torch.save(state, path)
except Exception as e:
logger.error(e)
def flatten(x):
if isinstance(x, collections.Iterable):
return [a for i in x for a in flatten(i)]
else:
return [x]
def check_doc_size(X_train, logger):
n_sent = []
n_words = []
n_words_per_doc = []
for doc in X_train:
n_sent.append(len(doc))
words_per_doc = 0
for sent in doc:
n_words.append(len(sent))
words_per_doc += len(sent)
n_words_per_doc.append(words_per_doc)
logger.info('#sent in a document')
logger.info(pd.Series(n_sent).describe(percentiles=[.25, .5, .75, .8, .85, .9, .95, .96, .98]))
logger.info('#words in a sent')
logger.info(pd.Series(n_words).describe(percentiles=[.25, .5, .75, .8, .85, .9, .95, .96, .98]))
logger.info('#words in a document')
logger.info(pd.Series(n_words_per_doc).describe(percentiles=[.25, .5, .75, .8, .85, .9, .95, .96, .98]))
def pad_batch(mini_batch):
mini_batch_size = len(mini_batch)
max_sent_len = min(np.max([len(x) for x in mini_batch]), 10)
max_token_len = min(np.max([len(val) for sublist in mini_batch for val in sublist]), 50)
main_matrix = np.zeros((mini_batch_size, max_sent_len, max_token_len), dtype=np.int)
for i in range(main_matrix.shape[0]):
for j in range(main_matrix.shape[1]):
for k in range(main_matrix.shape[2]):
try:
main_matrix[i, j, k] = mini_batch[i][j][k]
except IndexError:
pass
return Variable(torch.from_numpy(main_matrix).transpose(0, 1))
def pad_batch_nosent_fast(args, word_index, mini_batch, region, stride):
mini_batch_size = len(mini_batch)
n_tokens = min(args.max_tokens, max([sum([len(sent) for sent in doc]) for doc in mini_batch]))
main_matrix = np.zeros((mini_batch_size, n_tokens, region), dtype=np.int)
unk_idx = word_index['UNK']
main_matrix.fill(unk_idx)
for i in range(mini_batch_size):
sent_cat = [unk_idx] * (region - 1) + [word for sent in mini_batch[i] for word in sent] # padded
# sent_cat = [word for sent in mini_batch[i] for word in sent]
idx = 0
ct = 0
last_set = set()
while ct < n_tokens and idx < len(sent_cat):
word_set = set() # words in current region
for region_idx, word in enumerate(sent_cat[idx: idx + region]):
if word in word_set:
main_matrix[i][ct][region_idx] = unk_idx
continue
if word != unk_idx:
word_set.add(word)
main_matrix[i][ct][region_idx] = word
if last_set == word_set:
ct -= 1
last_set = word_set
idx += stride
ct += 1
return main_matrix
# region is for bow-cnn. need to covert vectors to multi-hot
def pad_batch_nosent(mini_batch, word_index, onehot=False, region=None, stride=None):
mini_batch_size = len(mini_batch)
n_tokens = min(256, max([sum([len(sent) for sent in doc]) for doc in mini_batch]))
if onehot:
main_matrix = np.zeros((mini_batch_size, n_tokens, 30000), dtype=np.float32)
unk_idx = word_index['UNK']
for i in range(mini_batch_size):
if not region:
ct = 0
for sent in mini_batch[i]:
for word in sent:
if word != unk_idx:
if word > unk_idx:
word -= 1
main_matrix[i][ct][word] = 1
ct += 1
if ct == n_tokens:
break
if ct == n_tokens:
break
else:
sent_cat = [unk_idx] * (region - 1) + [word for sent in mini_batch[i] for word in sent]
idx = 0
ct = 0
last_set = set()
while ct < n_tokens and idx < len(sent_cat):
word_set = set()
for word in sent_cat[idx: idx + region]:
if word != unk_idx:
if word > unk_idx:
word -= 1
word_set.add(word)
main_matrix[i][ct][word] = 1
# variable-stride
if last_set == word_set:
ct -= 1
last_set = word_set
idx += stride
ct += 1
else:
main_matrix = np.zeros((mini_batch_size, n_tokens), dtype=np.int)
for i in range(mini_batch_size):
ct = 0
for sent in mini_batch[i]:
for word in sent:
main_matrix[i][ct] = word
ct += 1
if ct == n_tokens:
break
if ct == n_tokens:
break
return Variable(torch.from_numpy(main_matrix))
def iterate_minibatches(args, inputs, targets, batchsize, shuffle):
assert inputs.shape[0] == targets.shape[0]
if args.debug:
for _ in range(300):
yield inputs[:batchsize], targets[:batchsize]
return
if shuffle:
indices = np.arange(inputs.shape[0])
np.random.shuffle(indices)
for start_idx in range(0, inputs.shape[0] - batchsize + 1, batchsize):
if shuffle:
excerpt = indices[start_idx:start_idx + batchsize]
else:
excerpt = slice(start_idx, start_idx + batchsize)
yield inputs[excerpt], targets[excerpt]
if start_idx + batchsize < inputs.shape[0]:
if shuffle:
excerpt = indices[start_idx + batchsize:]
else:
excerpt = slice(start_idx + batchsize, start_idx + batchsize * 2)
yield inputs[excerpt], targets[excerpt]
def iterate_minibatches_order(args, inputs, targets, batchsize):
assert inputs.shape[0] == targets.shape[0]
if args.debug:
for _ in range(300):
yield inputs[:batchsize], targets[:batchsize]
return
indices = np.argsort([-len(doc) for doc in inputs])
for start_idx in range(0, inputs.shape[0] - batchsize + 1, batchsize):
excerpt = indices[start_idx:start_idx + batchsize]
yield inputs[excerpt], targets[excerpt]
if start_idx + batchsize < inputs.shape[0]:
excerpt = indices[start_idx + batchsize:]
yield inputs[excerpt], targets[excerpt]
def gen_minibatch(logger, args, word_index, tokens, labels, mini_batch_size, shuffle=False):
logger.info('# batches = {}'.format(len(tokens) / mini_batch_size))
# for token, label in iterate_minibatches(tokens, labels, mini_batch_size, shuffle=shuffle):
for token, label in iterate_minibatches_order(args, tokens, labels, mini_batch_size):
if args.base_model == 'textcnn':
token = pad_batch_nosent(token, word_index)
elif args.base_model == 'ohcnn-seq':
token = pad_batch_nosent(token, word_index, onehot=True)
elif args.base_model == 'ohcnn-bow':
token = pad_batch_nosent(token, word_index, onehot=True, region=20, stride=2)
elif args.base_model == 'ohcnn-bow-fast':
main_matrix = pad_batch_nosent_fast(args, word_index, token, region=20, stride=2)
token = Variable(torch.from_numpy(main_matrix))
else:
token = pad_batch(token)
if args.gpu:
yield token.cuda(), label
else:
yield token, label
def gen_minibatch_from_cache(logger, args, tree, mini_batch_size, name, shuffle):
pkl_path = '{}_{}.pkl'.format(name, mini_batch_size)
if not os.path.exists(pkl_path):
logger.error('{} NOT FOUND'.format(pkl_path))
exit(-1)
if 'train' in name:
if tree.data_cache is not None:
(token_l, label_l) = tree.data_cache
logger.info('loaded from tree.data_cache')
else:
(token_l, label_l) = pickle.load(open(pkl_path, 'rb'))
tree.data_cache = (token_l, label_l)
else:
(token_l, label_l) = pickle.load(open(pkl_path, 'rb'))
logger.info('loaded {} batches from {}'.format(len(label_l), pkl_path))
if args.debug:
for _ in range(1000):
token = Variable(torch.from_numpy(token_l[0]))
label = label_l[0]
if args.gpu:
yield token.cuda(), label
else:
yield token, label
return
if shuffle:
indices = np.arange(len(token_l))
np.random.shuffle(indices)
for i in indices:
token = token_l[i]
label = label_l[i]
token = Variable(torch.from_numpy(token))
if args.gpu:
yield token.cuda(), label
else:
yield token, label
else:
for token, label in zip(token_l, label_l):
# out of memory
if mini_batch_size > 32:
new_batch_size = mini_batch_size // 2
for i in range(0, mini_batch_size, new_batch_size):
token_v = Variable(torch.from_numpy(token[i:i + new_batch_size]))
label_v = label[i:i + new_batch_size]
if args.gpu:
yield token_v.cuda(), label_v
else:
yield token_v, label_v
else:
token = Variable(torch.from_numpy(token))
if args.gpu:
yield token.cuda(), label
else:
yield token, label
def save_minibatch(logger, args, word_index, tokens, labels, mini_batch_size, name=''):
filename = '{}_{}.pkl'.format(name, mini_batch_size)
if os.path.exists(filename):
logger.warning(f'skipped since {filename} existed')
return
token_l = []
label_l = []
for token, label in tqdm(iterate_minibatches_order(args, tokens, labels, mini_batch_size)):
token = pad_batch_nosent_fast(args, word_index, token, region=20, stride=2)
token_l.append(token)
label_l.append(label)
pickle.dump((token_l, label_l), open(filename, 'wb'))