-
Notifications
You must be signed in to change notification settings - Fork 4
/
ebsd_Orientation.doctest
143 lines (126 loc) · 5.04 KB
/
ebsd_Orientation.doctest
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
/** \file
\brief Tutorials for ebsd_Orientation
\section overview_sec Overview
Orientation class: An orientation is combination of material symmetry (e.g. cubic) and specific rotation (e.g. rotated by 45 degrees)
Note: "doctest: +SKIP" implies that the automatic test skips it
\section tutorialsOrientation Tutorials
\subsection exampleColors Example: check colors of certain orientations. Answers are given in RGB scale.
Three examples are investigated:
- [100] = red: 1,0,0
- [110] = green: 0,1,0 (rotation by 45deg arount Phi)
- [111] = blue: 0,0,1
Each example creates an angle from 3 float values, creates an orientation and rounds the color to improve reabability.
\verbatim
>>> import numpy as np
>>> from ebsd_Orientation import Orientation
>>> angle = np.radians([0,0,0])
>>> o = Orientation(Eulers=angle, symmetry="cubic")
>>> np.round(o.IPFcolor( [0,0,1] ),3)
array([1., 0., 0.])
>>> angle = np.radians([0,45,0])
>>> o = Orientation(Eulers=angle, symmetry="cubic")
>>> np.round(o.IPFcolor( [0,0,1] ),3)
array([0., 1., 0.])
>>> angle = np.radians([0,55,45])
>>> o = Orientation(Eulers=angle, symmetry="cubic")
>>> np.round(o.IPFcolor( [0,0,1] ),3)
array([0. , 0.09, 1. ])
\endverbatim
\subsection exampleColorsb Example: [111] direction is difficult to ad-hoc define by angles. Use vectors to calculate
and verify
\image html ebsd_Orientation1.png
\verbatim
>>> from verifyAll import doctestImage
>>> import numpy as np
>>> hkl = np.array([1,1,1], dtype=np.float)
>>> uvw1 = np.array([1,-1,0], dtype=np.float)
>>> np.dot(hkl,uvw1)
0.0
>>> hkl /= np.linalg.norm(hkl)
>>> uvw1 /= np.linalg.norm(uvw1)
>>> uvw2 = np.cross(hkl,uvw1)
>>> rotM = np.vstack( (uvw1,uvw2,hkl) )
>>> rotM
array([[ 0.70710678, -0.70710678, 0. ],
[ 0.40824829, 0.40824829, -0.81649658],
[ 0.57735027, 0.57735027, 0.57735027]])
>>> o = Orientation(matrix=rotM, symmetry='cubic')
>>> o.doctest = True
>>> o.plot()
>>> doctestImage("ebsd_Orientation_1")
doctest 1
>>> o.plot([1,0,0])
>>> doctestImage("ebsd_Orientation_2")
doctest 1
>>> o.asEulers(degrees=True)
array([ 0. , 54.73561032, 45. ])
>>> np.round(o.IPFcolor( [0,0,1] ),3) #should be blue
array([0., 0., 1.])
\endverbatim
\subsection exampleOrientation1b Compare to OIM Software
OIM software shows the 2D projection with the RD upward. Note, many textbooks have the RD downward. ND is always pointing out of the plane; TD changes depending on RD
\verbatim
>>> o = Orientation(Eulers=np.radians([0,10,10]), symmetry="cubic")
>>> o.doctest = True
>>> o.plot( )
>>> doctestImage("ebsd_Orientation_3")
doctest 1
>>> o.plot(plot2D='up-left')
>>> doctestImage("ebsd_Orientation_4")
doctest 1
>>> o.plot(poles=[1,0,0], plot2D='up-left', scale=1.5)
>>> doctestImage("ebsd_Orientation_5")
doctest 1
>>> o.plot(poles=[1,1,1])
>>> doctestImage("ebsd_Orientation_6")
doctest 1
>>> o.toScreen(equivalent=False)
Euler angles: [ 0. 10. 10.]
HKL [ 1 5 32]
UVW [ 5 -1 0]
\endverbatim
The HKL and UVW vectors are rounded to integer, hence rough values. They are convenient but not precise.
\subsection exampleOrientation3 Example: loop through all equivalent directions and calculate the directions
\verbatim
>>> o = Orientation(Eulers=np.radians([0,45,0]), symmetry="cubic")
>>> oHelp = Orientation(Eulers=np.array([0.,0.,0.]), symmetry="cubic") #find equivalent directions
>>> for q in oHelp.symmetry.equivalentQuaternions(oHelp.quaternion):
... axis = q.conjugated()*np.array([1,0,0])
... direction = o.inversePole( axis, SST=False)[0]
... print(axis, direction)
[1. 0. 0.] [1. 0. 0.]
[1. 0. 0.] [1. 0. 0.]
[-1. 0. 0.] [-1. 0. 0.]
[-1. 0. 0.] [-1. 0. 0.]
[-1. 0. 0.] [-1. 0. 0.]
[-1. 0. 0.] [-1. 0. 0.]
[0. 0. 1.] [0. 0.70710678 0.70710678]
[ 0. 0. -1.] [ 0. -0.70710678 -0.70710678]
[ 0. -1. 0.] [ 0. -0.70710678 0.70710678]
[0. 1. 0.] [ 0. 0.70710678 -0.70710678]
[0. 0. 1.] [0. 0.70710678 0.70710678]
[0. 1. 0.] [ 0. 0.70710678 -0.70710678]
[ 0. 0. -1.] [ 0. -0.70710678 -0.70710678]
[0. 0. 1.] [0. 0.70710678 0.70710678]
[ 0. 0. -1.] [ 0. -0.70710678 -0.70710678]
[ 0. -1. 0.] [ 0. -0.70710678 0.70710678]
[0. 1. 0.] [ 0. 0.70710678 -0.70710678]
[ 0. -1. 0.] [ 0. -0.70710678 0.70710678]
[0. 1. 0.] [ 0. 0.70710678 -0.70710678]
[ 0. -1. 0.] [ 0. -0.70710678 0.70710678]
[ 0. 0. -1.] [ 0. -0.70710678 -0.70710678]
[0. 0. 1.] [0. 0.70710678 0.70710678]
[1. 0. 0.] [1. 0. 0.]
[1. 0. 0.] [1. 0. 0.]
\endverbatim
\subsection exampleOrientation4 Example: calculate average orientation
\verbatim
>>> a = Orientation(Eulers=np.radians([0,45,0]), symmetry='cubic')
>>> b = Orientation(Eulers=np.radians([0,0,0]), symmetry='cubic')
>>> avg = Orientation.average([a,b,b]) #take orientation b twice
>>> print("Rotation angles",avg.asEulers(degrees=True))
Rotation angles [ 0. 14.6388066 0. ]
\endverbatim
\section ebsd_Orientation_Code Python source code documentation
\ref ebsd_Orientation.Orientation material symmetry + rotation of a material point
*/