Das Institute for Machine Learning and Analytics (IMLA) an der Hochschule Offenburg veranstaltet auch dieses jahr wieder eine KI Sommerschule.
Täglich 9-12.30 Uhr und 13.30-17 Uhr mit Pausen.
In der Sommerschule werden die Grundlagen aktueller KI und Machine Learning Methoden vermittelt werden. Dabei legen wir großen Wert auf Praxisnähe! Knapp 50% des Kurses bestehen aus praktischen Übungen anhand von konkreten Aufgaben aus der Praxis…
Derzeit planen wir mit einer Präsentzveranstaltung nach den 3G Regeln, d.h. Teilnehmer müssen geimpft, genesen oder getestet sein. Sollten sich die Rahmenbedingungen bis zum Kurs ändern, ist auch ein Wechsel auf ein reines Online-Format möglich.
Der Kurs wird an der HS Offenburg durchgeführt. Kursräume und Anfahrtsbeschreibungen werden den Teilnehmern rechtzeitig mitgeteilt.
Zielgruppe sind Mitarbeiterinnen und Mitarbeiter aus Fachabteilungen oder der IT-Abteilung von Unternehmen, die über IT-Kenntnisse und grundlegende Programmierkenntnisse verfügen. Der Kurs ist für Einsteiger im Bereich KI / Machine Learning ausgelegt.
Klaus Dorer ist Leiter des Labors Autonome Systeme an der Hochschule Offenburg. Er leitet bzw. wirkt mit an verschiedenen Projekten zum Thema maschinelles Lernen wie dem Projekt Menschen Lernen Maschinelles Lernen (ML2), dem Projekt Magma, bei dem simulierte Fußballroboter lernen Fußball zu spielen (amtierende Vizeweltmeister), dem Projekt Sweaty, bei dem ein echter humanoider Roboter Fußball spielt (amtierender Weltmeister).
Janis Keuper leitet das "Institute for Machine Learning and Analytics" (IMLA) an der HS Offenburg. Seine Forschungsgebiete liegen in den Bereichen "Large Scale Machine Learning" / Big Data, Generativen Lernmethoden und der Sicherheit und Robustheit von KI Verfahren. In den Kurs wird er seine langjährige Erfahrung aus einer Vielzahl von Industrieprojekten mit einem sehr breiten Anwendungsspektrum einbringen.
- to do
Daniela Oelke ist Professorin für Maschinelles Lernen an der Hochschule Offenburg. Ihr Forschungsschwerpunkt liegt im Bereich der Visuellen Datenanalyse und der Erklärbaren Künstlichen Intelligenz. In dem Kurs wird sie Methoden zur Verarbeitung natürlichsprachlicher Daten vorstellen.
- Einführung
- Grundlegende Konzepte
- Machine Learning mit KNIME
- Algorithmen zur Klassifikation und Regression
- Unüberwachtes Lernen
- Ethik und Gesellschaftliche Auswirkungen von KI
- Hackathon / "hands-on" Projekt
- Deep Learning
Die Teilnahme am Kurs ist gebührenfrei. Auf Grund der begrenzten Teilnehmerzahl werden wir bei zu vielen Anmeldungen aber ein Auswahl treffen müssen. Z.B. kann die maximale Anzahl an Teilnehmern einer Firma festgelegt werden.
Anmeldeschluß: 9.9. EOD
-
Welche Programmierkenntnisse werden vorrausgesetz? Teilnehmer sollten grundlegende Kenntnisse und Erfahrung im Umgang mit einer Programmiersprache wie Python, Java, C/C++, Matlab usw mitbringen. D.h. einfache Paradigmen wie Schleifen, Klassen und Datenstrukturen sollten geläufig sein.
-
Kann ich auch nur an Teilen des Kurses teilnehmen? Eher nicht. Die Einzelnen Module bauen aufeinander auf und Teilnehmer sollten an allen Modulen teilnehmen. Im Einzelfall kann natürlich mal ein Modul aus terminlichen Gründen ausgelassen werden.
Prof. Dr.-Ing. Janis Keuper
Institute for Machine Learning and Analytics (IMLA)
Hochschule Offenburg
Badstr. 24
77652 Offenburg
[email protected]