-
Notifications
You must be signed in to change notification settings - Fork 33
/
segformer_clothes.py
163 lines (136 loc) · 5.96 KB
/
segformer_clothes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os
import numpy as np
from urllib.request import urlopen
import torchvision.transforms as transforms
from .utils.file_util import node_path
from .utils.seg_clothes import *
from rembg import remove
class segformer_remove_bg:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {"required":
{
"source":("IMAGE", {"default": "","multiline": False})
}
}
RETURN_TYPES = ("IMAGE","BOOLEAN")
RETURN_NAMES = ("image","open")
OUTPUT_NODE = True
FUNCTION = "sample"
CATEGORY = "CXH"
def sample(self,source):
pil_image = tensor2pil(source)
o_image = remove(pil_image)
r= pil2tensor(o_image)
return r,True
class segformer_agnostic:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {"required":
{
"source":("IMAGE", {"default": "","multiline": False}),
"mask":("MASK", {"default": "","multiline": False}),
}
}
RETURN_TYPES = ("IMAGE","BOOLEAN")
RETURN_NAMES = ("mark_image","open")
OUTPUT_NODE = True
FUNCTION = "sample"
CATEGORY = "CXH"
def sample(self,source,mask):
# 将source和mask从tensor转换为PIL Image
pil_image = tensor2pil(source)
mask_pil = tensor2pil(mask)
# 将mask转换为灰度图并二值化
mask_np = np.array(mask_pil.convert('L'))
_, binary_mask = cv2.threshold(mask_np, 240, 255, cv2.THRESH_BINARY)
# 使用膨胀和腐蚀操作填充区域
kernel = np.ones((5, 5), np.uint8)
dilation = cv2.dilate(binary_mask, kernel, iterations=1)
erosion = cv2.erode(dilation, kernel, iterations=1)
# 创建一个与原图大小相同的灰色图像
# gray_image = np.full(pil_image.size, (128, 128, 128), dtype=np.uint8)
# 将PIL Image转换为NumPy数组以进行操作
pil_image_np = np.array(pil_image)
# 将mask应用到原始图像上,将指定区域替换为灰色
pil_image_np[erosion == 255] = [128, 128, 128]
# 将NumPy数组转回PIL Image
result_pil = Image.fromarray(pil_image_np).convert("RGB")
# 返回tensor形式的处理后的图像
return pil2tensor(result_pil),True
class segformer_clothes:
def __init__(self):
pass
# Labels: 0: "Background", 1: "Hat", 2: "Hair", 3: "Sunglasses", 4: "Upper-clothes", 5: "Skirt", 6: "Pants", 7: "Dress", 8: "Belt", 9: "Left-shoe", 10: "Right-shoe", 11: "Face", 12: "Left-leg", 13: "Right-leg", 14: "Left-arm", 15: "Right-arm", 16: "Bag", 17: "Scarf"
@classmethod
def INPUT_TYPES(cls):
return {"required":
{
"image":("IMAGE", {"default": "","multiline": False}),
"Face": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}),
"Hat": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}),
"Hair": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}),
"Upper_clothes": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}),
"Skirt": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}),
"Pants": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}),
"Dress": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}),
"Belt": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}),
"shoe": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}),
"leg": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}),
"arm": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}),
"Bag": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}),
"Scarf": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}),
}
}
RETURN_TYPES = ("IMAGE","BOOLEAN")
RETURN_NAMES = ("mask_image","open")
OUTPUT_NODE = True
FUNCTION = "sample"
CATEGORY = "CXH"
def sample(self,image,Face,Hat,Hair,Upper_clothes,Skirt,Pants,Dress,Belt,shoe,leg,arm,Bag,Scarf):
# seg切割结果,衣服pil
pred_seg,cloth = get_segmentation(image)
labels_to_keep = [0]
# if background :
# labels_to_keep.append(0)
if not Hat:
labels_to_keep.append(1)
if not Hair:
labels_to_keep.append(2)
if not Upper_clothes:
labels_to_keep.append(4)
if not Skirt:
labels_to_keep.append(5)
if not Pants:
labels_to_keep.append(6)
if not Dress:
labels_to_keep.append(7)
if not Belt:
labels_to_keep.append(8)
if not shoe:
labels_to_keep.append(9)
labels_to_keep.append(10)
if not Face:
labels_to_keep.append(11)
if not leg:
labels_to_keep.append(12)
labels_to_keep.append(13)
if not arm:
labels_to_keep.append(14)
labels_to_keep.append(15)
if not Bag:
labels_to_keep.append(16)
if not Scarf:
labels_to_keep.append(17)
mask = np.isin(pred_seg, labels_to_keep).astype(np.uint8)
# 创建agnostic-mask图像
mask_image = Image.fromarray(mask * 255)
mask_image = mask_image.convert("RGB")
mask_image = pil2tensor(mask_image)
# mask_r = pil2mask(mask_image)
# mask_tensor = torch.from_numpy(mask).clone()
return (mask_image,True)