-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlayout_viewer.py
416 lines (347 loc) · 15.5 KB
/
layout_viewer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
import json
import open3d
from PIL import Image
from scipy.ndimage import map_coordinates
from tqdm import trange
from misc.panostretch import pano_connect_points
from misc.post_proc import np_coor2xy, np_coory2v
def xyz_2_coorxy(xs, ys, zs, H, W):
''' Mapping 3D xyz coordinates to equirect coordinate '''
us = np.arctan2(xs, -ys)
vs = -np.arctan(zs / np.sqrt(xs**2 + ys**2))
coorx = (us / (2 * np.pi) + 0.5) * W
coory = (vs / np.pi + 0.5) * H
return coorx, coory
def create_ceiling_floor_mask(cor_id, H, W):
'''
Binary masking on equirectangular
where 1 indicate floor or ceiling
'''
# Prepare 1d ceiling-wall/floor-wall boundary
c_pts = []
f_pts = []
n_cor = len(cor_id)
for i in range(n_cor // 2):
# Ceiling boundary points
xys = pano_connect_points(cor_id[i * 2],
cor_id[(i * 2 + 2) % n_cor],
z=-50,
w=W,
h=H)
c_pts.extend(xys)
# Floor boundary points
xys = pano_connect_points(cor_id[i * 2 + 1],
cor_id[(i * 2 + 3) % n_cor],
z=50,
w=W,
h=H)
f_pts.extend(xys)
# Sort for interpolate
c_pts = np.array(c_pts)
c_pts = c_pts[np.argsort(c_pts[:, 0] * H - c_pts[:, 1])]
f_pts = np.array(f_pts)
f_pts = f_pts[np.argsort(f_pts[:, 0] * H + f_pts[:, 1])]
# Removed duplicated point
c_pts = np.concatenate([c_pts[:1], c_pts[1:][np.diff(c_pts[:, 0]) > 0]], 0)
f_pts = np.concatenate([f_pts[:1], f_pts[1:][np.diff(f_pts[:, 0]) > 0]], 0)
# Generate boundary for each image column
c_bon = np.interp(np.arange(W), c_pts[:, 0], c_pts[:, 1])
f_bon = np.interp(np.arange(W), f_pts[:, 0], f_pts[:, 1])
# Generate mask
mask = np.zeros((H, W), np.bool)
for i in range(W):
u = max(0, int(round(c_bon[i])) + 1)
b = min(W, int(round(f_bon[i])))
mask[:u, i] = 1
mask[b:, i] = 1
return mask
def warp_walls(equirect_texture, xy, floor_z, ceil_z, ppm):
''' Generate all walls' xyzrgba '''
H, W = equirect_texture.shape[:2]
all_rgb = []
all_xyz = []
for i in trange(len(xy), desc='Processing walls'):
next_i = (i + 1) % len(xy)
xy_a = xy[i]
xy_b = xy[next_i]
xy_w = np.sqrt(((xy_a - xy_b)**2).sum())
t_h = int(round((ceil_z - floor_z) * ppm))
t_w = int(round(xy_w * ppm))
xs = np.linspace(xy_a[0], xy_b[0], t_w)[None].repeat(t_h, 0)
ys = np.linspace(xy_a[1], xy_b[1], t_w)[None].repeat(t_h, 0)
zs = np.linspace(floor_z, ceil_z, t_h)[:, None].repeat(t_w, 1)
coorx, coory = xyz_2_coorxy(xs, ys, zs, H, W)
plane_texture = np.stack([
map_coordinates(equirect_texture[..., 0], [coory, coorx],
order=1,
mode='wrap'),
map_coordinates(equirect_texture[..., 1], [coory, coorx],
order=1,
mode='wrap'),
map_coordinates(equirect_texture[..., 2], [coory, coorx],
order=1,
mode='wrap'),
], -1)
plane_xyz = np.stack([xs, ys, zs], axis=-1)
all_rgb.extend(plane_texture.reshape(-1, 3))
all_xyz.extend(plane_xyz.reshape(-1, 3))
return all_rgb, all_xyz
def warp_floor_ceiling(equirect_texture, ceil_floor_mask, xy, z_floor,
z_ceiling, ppm):
''' Generate floor's and ceiling's xyzrgba '''
assert equirect_texture.shape[:2] == ceil_floor_mask.shape[:2]
H, W = equirect_texture.shape[:2]
min_x = xy[:, 0].min()
max_x = xy[:, 0].max()
min_y = xy[:, 1].min()
max_y = xy[:, 1].max()
t_h = int(round((max_y - min_y) * ppm))
t_w = int(round((max_x - min_x) * ppm))
xs = np.linspace(min_x, max_x, t_w)[None].repeat(t_h, 0)
ys = np.linspace(min_y, max_y, t_h)[:, None].repeat(t_w, 1)
zs_floor = np.zeros_like(xs) + z_floor
zs_ceil = np.zeros_like(xs) + z_ceiling
coorx_floor, coory_floor = xyz_2_coorxy(xs, ys, zs_floor, H, W)
coorx_ceil, coory_ceil = xyz_2_coorxy(xs, ys, zs_ceil, H, W)
# Project view
floor_texture = np.stack([
map_coordinates(equirect_texture[..., 0], [coory_floor, coorx_floor],
order=1,
mode='wrap'),
map_coordinates(equirect_texture[..., 1], [coory_floor, coorx_floor],
order=1,
mode='wrap'),
map_coordinates(equirect_texture[..., 2], [coory_floor, coorx_floor],
order=1,
mode='wrap'),
], -1)
floor_mask = map_coordinates(ceil_floor_mask, [coory_floor, coorx_floor],
order=0)
floor_xyz = np.stack([xs, ys, zs_floor], axis=-1)
ceil_texture = np.stack([
map_coordinates(equirect_texture[..., 0], [coory_ceil, coorx_ceil],
order=1,
mode='wrap'),
map_coordinates(equirect_texture[..., 1], [coory_ceil, coorx_ceil],
order=1,
mode='wrap'),
map_coordinates(equirect_texture[..., 2], [coory_ceil, coorx_ceil],
order=1,
mode='wrap'),
], -1)
ceil_mask = map_coordinates(ceil_floor_mask, [coory_ceil, coorx_ceil],
order=0)
ceil_xyz = np.stack([xs, ys, zs_ceil], axis=-1)
floor_texture = floor_texture[floor_mask]
floor_xyz = floor_xyz[floor_mask]
ceil_texture = ceil_texture[ceil_mask]
ceil_xyz = ceil_xyz[ceil_mask]
return floor_texture, floor_xyz, ceil_texture, ceil_xyz
def create_occlusion_mask(xyz):
xs, ys, zs = xyz.T
ds = np.sqrt(xs**2 + ys**2 + zs**2)
# Reorder by depth (from far to close)
idx = np.argsort(-ds)
xs, ys, zs, ds = xs[idx], ys[idx], zs[idx], ds[idx]
# Compute coresponding quirect coordinate
coorx, coory = xyz_2_coorxy(xs, ys, zs, H=256, W=512)
quan_coorx = np.round(coorx).astype(int) % W
quan_coory = np.round(coory).astype(int) % H
# Generate layout depth
depth_map = np.zeros((H, W), np.float32) + 1e9
depth_map[quan_coory, quan_coorx] = ds
tol_map = np.max([
np.abs(np.diff(depth_map, axis=0, append=depth_map[[-2]])),
np.abs(np.diff(depth_map, axis=1, append=depth_map[:, [0]])),
np.abs(np.diff(depth_map, axis=1, prepend=depth_map[:, [-1]])),
], 0)
# filter_ds = map_coordinates(depth_map, [coory, coorx], order=1, mode='wrap')
# tol_ds = map_coordinates(tol_map, [coory, coorx], order=1, mode='wrap')
filter_ds = depth_map[quan_coory, quan_coorx]
tol_ds = tol_map[quan_coory, quan_coorx]
mask = ds > (filter_ds + 2 * tol_ds)
return mask, idx
"""Module which creates mesh lines from a line set
Open3D relies upon using glLineWidth to set line width on a LineSet
However, this method is now deprecated and not fully supporeted in newer OpenGL versions
See:
Open3D Github Pull Request - https://github.com/intel-isl/Open3D/pull/738
Other Framework Issues - https://github.com/openframeworks/openFrameworks/issues/3460
This module aims to solve this by converting a line into a triangular mesh (which has thickness)
The basic idea is to create a cylinder for each line segment, translate it, and then rotate it.
License: MIT
"""
import numpy as np
import open3d as o3d
def align_vector_to_another(a=np.array([0, 0, 1]), b=np.array([1, 0, 0])):
"""
Aligns vector a to vector b with axis angle rotation
"""
if np.array_equal(a, b):
return None, None
axis_ = np.cross(a, b)
axis_ = axis_ / np.linalg.norm(axis_)
angle = np.arccos(np.dot(a, b))
return axis_, angle
def normalized(a, axis=-1, order=2):
"""Normalizes a numpy array of points"""
l2 = np.atleast_1d(np.linalg.norm(a, order, axis))
l2[l2 == 0] = 1
return a / np.expand_dims(l2, axis), l2
class LineMesh(object):
def __init__(self, points, lines=None, colors=[0, 1, 0], radius=0.15):
"""Creates a line represented as sequence of cylinder triangular meshes
Arguments:
points {ndarray} -- Numpy array of ponts Nx3.
Keyword Arguments:
lines {list[list] or None} -- List of point index pairs denoting line segments. If None, implicit lines from ordered pairwise points. (default: {None})
colors {list} -- list of colors, or single color of the line (default: {[0, 1, 0]})
radius {float} -- radius of cylinder (default: {0.15})
"""
self.points = np.array(points)
self.lines = np.array(
lines) if lines is not None else self.lines_from_ordered_points(self.points)
self.colors = np.array(colors)
self.radius = radius
self.cylinder_segments = []
self.create_line_mesh()
@staticmethod
def lines_from_ordered_points(points):
lines = [[i, i + 1] for i in range(0, points.shape[0] - 1, 1)]
return np.array(lines)
def create_line_mesh(self):
first_points = self.points[self.lines[:, 0], :]
second_points = self.points[self.lines[:, 1], :]
line_segments = second_points - first_points
line_segments_unit, line_lengths = normalized(line_segments)
z_axis = np.array([0, 0, 1])
# Create triangular mesh cylinder segments of line
for i in range(line_segments_unit.shape[0]):
line_segment = line_segments_unit[i, :]
line_length = line_lengths[i]
# get axis angle rotation to allign cylinder with line segment
axis, angle = align_vector_to_another(z_axis, line_segment)
# Get translation vector
translation = first_points[i, :] + line_segment * line_length * 0.5
# create cylinder and apply transformations
cylinder_segment = o3d.geometry.TriangleMesh.create_cylinder(
self.radius, line_length)
cylinder_segment = cylinder_segment.translate(
translation, relative=False)
if axis is not None:
axis_a = axis * angle
cylinder_segment = cylinder_segment.rotate(
R=o3d.geometry.get_rotation_matrix_from_axis_angle(axis_a),
center=cylinder_segment.get_center())
# cylinder_segment = cylinder_segment.rotate(
# axis_a, center=True, type=o3d.geometry.RotationType.AxisAngle)
# color cylinder
color = self.colors if self.colors.ndim == 1 else self.colors[i, :]
cylinder_segment.paint_uniform_color(color)
self.cylinder_segments.append(cylinder_segment)
def add_line(self, vis):
"""Adds this line to the visualizer"""
for cylinder in self.cylinder_segments:
vis.add_geometry(cylinder)
def remove_line(self, vis):
"""Removes this line from the visualizer"""
for cylinder in self.cylinder_segments:
vis.remove_geometry(cylinder)
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--img',
required=True,
help='Image texture in equirectangular format')
parser.add_argument('--layout',
required=True,
help='Txt file containing layout corners (cor_id)')
parser.add_argument('--camera_height',
default=1.6,
type=float,
help='Camera height in meter (not the viewer camera)')
parser.add_argument('--ppm', default=80, type=int, help='Points per meter')
parser.add_argument('--point_size',
default=0.0025,
type=int,
help='Point size')
parser.add_argument('--ignore_floor',
action='store_true',
help='Skip rendering floor')
parser.add_argument('--ignore_ceiling',
action='store_true',
help='Skip rendering ceiling')
parser.add_argument('--ignore_wireframe',
action='store_true',
help='Skip rendering wireframe')
args = parser.parse_args()
# Reading source (texture img, cor_id txt)
equirect_texture = np.array(Image.open(args.img)) / 255.0
H, W = equirect_texture.shape[:2]
with open(args.layout) as f:
inferenced_result = json.load(f)
cor_id = np.array(inferenced_result['uv'], np.float32)
cor_id[:, 0] *= W
cor_id[:, 1] *= H
ceil_floor_mask = create_ceiling_floor_mask(cor_id, H, W)
# Convert cor_id to 3d xyz
N = len(cor_id) // 2
floor_z = -args.camera_height
floor_xy = np_coor2xy(cor_id[1::2], floor_z, W, H, floorW=1, floorH=1)
c = np.sqrt((floor_xy**2).sum(1))
v = np_coory2v(cor_id[0::2, 1], H)
ceil_z = (c * np.tan(v)).mean()
# Prepare
if not args.ignore_wireframe:
assert N == len(floor_xy)
wf_points = [[-x, y, floor_z] for x, y in floor_xy] +\
[[-x, y, ceil_z] for x, y in floor_xy]
wf_lines = [[i, (i+1)%N] for i in range(N)] +\
[[i+N, (i+1)%N+N] for i in range(N)] +\
[[i, i+N] for i in range(N)]
wf_colors = [[0, 1, 0] if i % 2 == 0 else [0, 0, 1] for i in range(N)] +\
[[0, 1, 0] if i % 2 == 0 else [0, 0, 1] for i in range(N)] +\
[[1, 0, 0] for i in range(N)]
wf_line_set = open3d.geometry.LineSet()
wf_line_set.points = open3d.utility.Vector3dVector(wf_points)
wf_line_set.lines = open3d.utility.Vector2iVector(wf_lines)
wf_line_set.colors = open3d.utility.Vector3dVector(wf_colors)
# Warp each wall
all_rgb, all_xyz = warp_walls(equirect_texture, floor_xy, floor_z, ceil_z,
args.ppm)
# Warp floor and ceiling
if not args.ignore_floor or not args.ignore_ceiling:
fi, fp, ci, cp = warp_floor_ceiling(equirect_texture,
ceil_floor_mask,
floor_xy,
floor_z,
ceil_z,
ppm=args.ppm)
if not args.ignore_floor:
all_rgb.extend(fi)
all_xyz.extend(fp)
if not args.ignore_ceiling:
all_rgb.extend(ci)
all_xyz.extend(cp)
all_xyz = np.array(all_xyz)
all_rgb = np.array(all_rgb)
all_xyz = all_xyz * np.array([-1,1,1])
# Filter occluded points
occlusion_mask, reord_idx = create_occlusion_mask(all_xyz)
all_xyz = all_xyz[reord_idx][~occlusion_mask]
all_rgb = all_rgb[reord_idx][~occlusion_mask]
# Launch point cloud viewer
print('Showing %d of points...' % len(all_rgb))
pcd = open3d.geometry.PointCloud()
pcd.points = open3d.utility.Vector3dVector(all_xyz)
pcd.colors = open3d.utility.Vector3dVector(all_rgb)
# Visualize result
tobe_visualize = [pcd]
if not args.ignore_wireframe:
# tobe_visualize.append(wf_line_set)
line_mesh1 = LineMesh(wf_points, wf_lines, wf_colors, radius=0.04)
line_mesh1_geoms = line_mesh1.cylinder_segments
tobe_visualize.extend(line_mesh1_geoms)
open3d.visualization.RenderOption.line_width = 10.0
open3d.visualization.draw_geometries(tobe_visualize)