forked from nh2tran/DeepNovo
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdeepnovo_model_training.py
683 lines (569 loc) · 27.6 KB
/
deepnovo_model_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# ==============================================================================
# Copyright 2017 Hieu Tran. All Rights Reserved.
#
# DeepNovo is publicly available for non-commercial uses.
#
# The source code in this file originated from the sequence-to-sequence tutorial
# of TensorFlow, Google Inc. I have modified the entire code to solve the
# problem of peptide sequencing. The copyright notice of Google is attached
# above as required by its Apache License.
# ==============================================================================
"""TODO(nh2tran): docstring."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
# We disable pylint because we need python3 compatibility.
from six.moves import zip # pylint: disable=redefined-builtin
import tensorflow as tf
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import embedding_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn_ops
from tensorflow.python.ops import rnn_cell
from tensorflow.python.ops import rnn_cell_impl
from tensorflow.python.ops import variable_scope
import deepnovo_config
def sequence_loss_per_sample(logits,
targets,
weights):
"""TODO(nh2tran): docstring.
Weighted cross-entropy loss for a sequence of logits (per example).
Args:
logits: List of 2D Tensors of shape [batch_size x num_decoder_symbols].
targets: List of 1D batch-sized int32 Tensors of the same length as logits.
weights: List of 1D batch-sized float-Tensors of the same length as logits.
average_across_timesteps: If set, divide the returned cost by the total
label weight.
softmax_loss_function: Function (inputs-batch, labels-batch) -> loss-batch
to be used instead of the standard softmax (the default if this is None).
name: Optional name for this operation, default: "sequence_loss_by_example".
Returns:
1D batch-sized float Tensor: The log-perplexity for each sequence.
Raises:
ValueError: If len(logits) is different from len(targets) or len(weights).
"""
#~ with tf.name_scope(name="sequence_loss_by_example",
#~ values=logits + targets + weights):
with ops.op_scope(logits + targets + weights,
None,
"sequence_loss_by_example"):
log_perp_list = []
for logit, target, weight in zip(logits, targets, weights):
target = array_ops.reshape(math_ops.to_int64(target), [-1])
crossent = nn_ops.sparse_softmax_cross_entropy_with_logits(logits=logit,
labels=target)
log_perp_list.append(crossent * weight)
log_perps = math_ops.add_n(log_perp_list)
# average_across_timesteps:
total_size = math_ops.add_n(weights)
total_size += 1e-12 # Just to avoid division by 0 for all-0 weights.
log_perps /= total_size
return log_perps
def sequence_loss(logits,
targets,
weights,
name):
"""TODO(nh2tran): docstring.
Weighted cross-entropy loss for a sequence of logits, batch-collapsed.
Args:
logits: List of 2D Tensors of shape [batch_size x num_decoder_symbols].
targets: List of 1D batch-sized int32 Tensors of the same length as logits.
weights: List of 1D batch-sized float-Tensors of the same length as logits.
average_across_timesteps: If set, divide the returned cost by the total
label weight.
average_across_batch: If set, divide the returned cost by the batch size.
softmax_loss_function: Function (inputs-batch, labels-batch) -> loss-batch
to be used instead of the standard softmax (the default if this is None).
name: Optional name for this operation, defaults to "sequence_loss".
Returns:
A scalar float Tensor: The average log-perplexity per symbol (weighted).
Raises:
ValueError: If len(logits) is different from len(targets) or len(weights).
"""
#~ with tf.name_scope(name=name,
#~ values=logits + targets + weights):
with ops.op_scope(logits + targets + weights, name):
cost = math_ops.reduce_sum(sequence_loss_per_sample(logits,
targets,
weights))
batch_size = array_ops.shape(targets[0])[0]
return cost / math_ops.cast(batch_size, dtypes.float32)
def decode_spectrum(encoded_spectrum,
intensity_inputs,
decoder_inputs_emb,
keep_conv,
keep_dense,
scope):
"""TODO(nh2tran): docstring.
RNN decoder for the sequence-to-sequence model.
Args:
decoder_inputs: A list of 2D Tensors [batch_size x cell.input_size].
initial_state: 2D Tensor with shape [batch_size x cell.state_size].
cell: rnn_cell.RNNCell defining the cell function and size.
loop_function: If not None, this function will be applied to the i-th output
in order to generate the i+1-st input, and decoder_inputs will be ignored,
except for the first element ("GO" symbol). This can be used for decoding,
but also for training to emulate http://arxiv.org/abs/1506.03099.
Signature -- loop_function(prev, i) = next
* prev is a 2D Tensor of shape [batch_size x cell.output_size],
* i is an integer, the step number (when advanced control is needed),
* next is a 2D Tensor of shape [batch_size x cell.input_size].
scope: VariableScope for the created subgraph; defaults to "rnn_decoder".
Returns:
A tuple of the form (outputs, state), where:
outputs: A list of the same length as decoder_inputs of 2D Tensors with
shape [batch_size x cell.output_size] containing generated outputs.
state: The state of each cell at the final time-step.
It is a 2D Tensor of shape [batch_size x cell.state_size].
(Note that in some cases, like basic RNN cell or GRU cell, outputs and
states can be the same. They are different for LSTM cells though.)
"""
single_cell = rnn_cell.BasicLSTMCell(num_units=deepnovo_config.num_units,
state_is_tuple=True)
#~ single_cell = rnn_cell.BasicRNNCell(num_units=deepnovo_config.num_units)
#~ single_cell = rnn_cell.GRUCell(num_units=deepnovo_config.num_units)
if deepnovo_config.num_layers > 1:
cell = tf.nn.rnn_cell.MultiRNNCell([single_cell] * deepnovo_config.num_layers)
else:
cell = single_cell
cell = rnn_cell.DropoutWrapper(cell,
input_keep_prob=keep_dense,
output_keep_prob=keep_dense)
with variable_scope.variable_scope(scope):
# INTENSITY-Model Parameters
# intensity input [128, 27, 2, 10]
if deepnovo_config.FLAGS.shared: # shared-weight
dense1_input_size = deepnovo_config.num_ion * deepnovo_config.WINDOW_SIZE
dense1_output_size = 1024
dense1_W = variable_scope.get_variable(
name="dense1_W_0",
shape=[dense1_input_size, dense1_output_size],
initializer=tf.uniform_unit_scaling_initializer(1.43))
dense1_B = variable_scope.get_variable(
name="dense1_B_0",
shape=[dense1_output_size],
initializer=tf.constant_initializer(0.1))
dense_linear_W = variable_scope.get_variable(
name="dense_linear_W",
shape=[dense1_output_size, 1])
dense_linear_B = variable_scope.get_variable(
name="dense_linear_B",
shape=[1],
initializer=tf.constant_initializer(0.1))
else: # joint-weight
# conv1: [128, 8, 20, 26] >> [128, 8, 20, 64] with kernel [1, 3, 26, 64]
conv1_weights = tf.get_variable(
name="conv1_weights",
shape=[1, 3, deepnovo_config.vocab_size, 64],
initializer=tf.uniform_unit_scaling_initializer(1.43))
conv1_biases = tf.get_variable(name="conv1_biases",
shape=[64],
initializer=tf.constant_initializer(0.1))
# conv2: [128, 8, 20, 64] >> [128, 8, 20, 64] with kernel [1, 2, 64, 64]
conv2_weights = tf.get_variable(
name="conv2_weights",
shape=[1, 2, 64, 64],
initializer=tf.uniform_unit_scaling_initializer(1.43))
conv2_biases = tf.get_variable(name="conv2_biases",
shape=[64],
initializer=tf.constant_initializer(0.1))
# max_pool: [128, 8, 20, 64] >> [128, 8, 10, 64]
# dense1: # 4D >> [128, 512]
dense1_input_size = deepnovo_config.num_ion * (deepnovo_config.WINDOW_SIZE // 2) * 64 # deepnovo_config.vocab_size
dense1_output_size = 512
dense1_weights = tf.get_variable(
"dense1_weights",
shape=[dense1_input_size, dense1_output_size],
initializer=tf.uniform_unit_scaling_initializer(1.43))
dense1_biases = tf.get_variable("dense1_biases",
shape=[dense1_output_size],
initializer=tf.constant_initializer(0.1))
# for testing
dense1_W_penalty = tf.multiply(tf.nn.l2_loss(dense1_weights),
deepnovo_config.l2_loss_weight,
name='dense1_W_penalty')
# dense2: # [128, 512] >> [128, 512]
#~ dense2_input_size = 512
#~ dense2_output_size = 512
#~ dense2_weights = tf.get_variable(
#~ "dense2_weights",
#~ shape=[dense2_input_size, dense2_output_size],
#~ initializer=tf.uniform_unit_scaling_initializer(1.43))
#~ dense2_biases = tf.get_variable("dense2_biases",
#~ shape=[dense2_output_size],
#~ initializer=tf.constant_initializer(0.1))
# logit_linear: [128, 512] >> [128, 27]
#~ linear_input_size = 512
#~ linear_output_size = deepnovo_config.vocab_size
#~ linear_weights = tf.get_variable(
#~ "linear_weights",
#~ shape=[linear_input_size, linear_output_size])
#~ linear_biases = tf.get_variable("linear_biases",
#~ shape=[linear_output_size],
#~ initializer=tf.constant_initializer(0.0))
# LSTM-Intensity Connection-Model Parameters
#~ denseL_W = variable_scope.get_variable(
#~ name="denseL_W",
#~ shape=[deepnovo_config.vocab_size, deepnovo_config.vocab_size],
#~ initializer=tf.uniform_unit_scaling_initializer(1.43))
#~ denseI_W = variable_scope.get_variable(
#~ name="denseI_W",
#~ shape=[deepnovo_config.vocab_size, deepnovo_config.vocab_size],
#~ initializer=tf.uniform_unit_scaling_initializer(1.43))
#~ denseC_B = variable_scope.get_variable(
#~ name="denseC_B",
#~ shape=[deepnovo_config.vocab_size],
#~ initializer=tf.constant_initializer(0.1))
# cat
dense_concat_W = variable_scope.get_variable(
name="dense_concat_W",
shape=[512 + 512, 512],
initializer=tf.uniform_unit_scaling_initializer(1.43))
dense_concat_B = variable_scope.get_variable(
name="dense_concat_B",
shape=[512],
initializer=tf.constant_initializer(0.1))
# DECODING - SPECTRUM as Input 0
with variable_scope.variable_scope("LSTM_cell"):
input0 = encoded_spectrum
batch_size = array_ops.shape(input0)[0]
zero_state = cell.zero_state(batch_size=batch_size, dtype=tf.float32)
#~ _, lstm_state = cell(inputs=input0,state=zero_state)
# nobi
_, lstm_state_0 = cell(inputs=input0, state=zero_state)
# nobi
# DECODING - lstm_input_projected
with variable_scope.variable_scope("LSTM_input_projected"):
lstm_input_projected_W = variable_scope.get_variable(
name="lstm_input_projected_W",
shape=[deepnovo_config.embedding_size, deepnovo_config.num_units])
lstm_input_projected_B = variable_scope.get_variable(
name="lstm_input_projected_B",
shape=[deepnovo_config.num_units],
initializer=tf.constant_initializer(0.1))
# DECODING LOOP
# nobi
outputs = []
AA_1 = decoder_inputs_emb[0] # padding [AA_1, AA_2, ?] with GO/EOS
# ltsm.len_full
lstm_state = lstm_state_0
for i, AA_2 in enumerate(decoder_inputs_emb):
# nobi
if i > 0: # to-do-later: bring variable definitions out of the loop
variable_scope.get_variable_scope().reuse_variables()
# INTENSITY-Model
candidate_intensity = intensity_inputs[i] # [128, 27, 2, 10]
if deepnovo_config.FLAGS.shared: # shared-weight
candidate_intensity_reshape = tf.reshape(candidate_intensity,
shape=[-1, dense1_input_size]) # [128*27, 2*10]
layer_dense1_input = candidate_intensity_reshape
layer_dense1 = tf.nn.relu(tf.matmul(layer_dense1_input, dense1_W)
+ dense1_B) # [128*27, 1024]
layer_dense1_drop = tf.nn.dropout(layer_dense1, keep_dense)
layer_dense1_output = (tf.matmul(layer_dense1_drop, dense_linear_W)
+ dense_linear_B) # [128*27,1]
# Intensity output
intensity_output = tf.reshape(layer_dense1_output,
shape=[-1, deepnovo_config.vocab_size]) # [128,27]
else: # joint-weight
# image_batch: [128, 26, 8, 20] >> [128, 8, 20, 26]
# This is a bug, should be fixed at the input processing later.
image_batch = tf.transpose(candidate_intensity, perm=[0, 2, 3, 1]) # [128,8,20,26]
# conv1: [128, 8, 20, 26] >> [128, 8, 20, 64] with kernel [1, 3, 26, 64]
conv1 = tf.nn.relu(tf.nn.conv2d(image_batch,
conv1_weights,
strides=[1, 1, 1, 1],
padding='SAME')
+ conv1_biases)
# conv2: [128, 8, 20, 64] >> [128, 8, 20, 64] with kernel [1, 2, 64, 64]
conv2 = tf.nn.relu(tf.nn.conv2d(conv1,
conv2_weights,
strides=[1, 1, 1, 1],
padding='SAME')
+ conv2_biases)
conv2 = tf.nn.max_pool(conv2,
ksize=[1, 1, 3, 1],
strides=[1, 1, 2, 1],
padding='SAME') # [128, 8, 10, 64]
conv2 = tf.nn.dropout(conv2, keep_conv)
# dense1: 4D >> [128, 512]
dense1_input = tf.reshape(conv2, [-1, dense1_input_size]) # 2D flatten
dense1 = tf.nn.relu(tf.matmul(dense1_input, dense1_weights)
+ dense1_biases) # [128, 512]
# dense2: # [128, 512] >> [128, 512]
#~ dense2 = tf.nn.relu(tf.matmul(dense1, dense2_weights) + dense2_biases) # [128, 512]
#~ dropout1 = tf.nn.dropout(dense2, keep_dense, name="dropout1")
dropout1 = tf.nn.dropout(dense1, keep_dense, name="dropout1")
# logit_linear: [128, 512] >> [128, 27]
#~ intensity_output = tf.add(tf.matmul(dropout1, linear_weights),
#~ linear_biases) # [128, 27]
intensity_output = dropout1
with variable_scope.variable_scope("intensity_output_projected"):
intensity_output_projected = rnn_cell_impl._linear( # TODO(nh2tran): _linear
args=intensity_output,
output_size=deepnovo_config.vocab_size, # [128,27]
bias=True,
bias_initializer=None,#0.1,
kernel_initializer=None)
# nobi
# LSTM-Model
AA_1_projected = (tf.matmul(AA_1, lstm_input_projected_W)
+ lstm_input_projected_B)
AA_2_projected = (tf.matmul(AA_2, lstm_input_projected_W)
+ lstm_input_projected_B)
with variable_scope.variable_scope("LSTM_cell"):
variable_scope.get_variable_scope().reuse_variables()
# nobi
#~ _, lstm_state_1 = cell(inputs=AA_1_projected, state=lstm_state_0)
#~ lstm_output, _ = cell(inputs=AA_2_projected, state=lstm_state_1)
#
# lstm.len_full
lstm_output, lstm_state = cell(inputs=AA_2_projected, state=lstm_state)
AA_1 = AA_2
with variable_scope.variable_scope("lstm_output_projected"):
lstm_output_projected = rnn_cell_impl._linear( # TODO(nh2tran): _linear
args=lstm_output,
output_size=deepnovo_config.vocab_size, # [128,27]
bias=True,
bias_initializer=None,#0.1,
kernel_initializer=None)
# LSTM-Intensity Connection-Model >> OUTPUT
if deepnovo_config.FLAGS.use_intensity and deepnovo_config.FLAGS.use_lstm:
#~ output_logit = tf.nn.relu(tf.matmul(lstm_output_projected, denseL_W)
#~ + tf.matmul(intensity_output_projected, denseI_W)
#~ + denseC_B)
# cat
concat = tf.concat(axis=1, values=[intensity_output, lstm_output])
concat_dense = tf.nn.relu(tf.matmul(concat, dense_concat_W)
+ dense_concat_B)
concat_drop = tf.nn.dropout(concat_dense, keep_dense)
with variable_scope.variable_scope("output_logit"):
output_logit = rnn_cell_impl._linear(args=concat_drop, # TODO(nh2tran): _linear
output_size=deepnovo_config.vocab_size, # [128,27]
bias=True,
bias_initializer=None,#0.1,
kernel_initializer=None)
elif deepnovo_config.FLAGS.use_intensity:
# intensity only (without LSTM >> up to 10% loss, especially at AA-accuracy?)
output_logit = intensity_output_projected
elif deepnovo_config.FLAGS.use_lstm:
output_logit = lstm_output_projected
else:
print("ERROR: wrong LSTM-Intensity model specified!")
sys.exit()
outputs.append(output_logit)
return (outputs, dense1_W_penalty)
def embed_labels(encoded_spectrum,
intensity_inputs_forward,
intensity_inputs_backward,
decoder_inputs_forward,
decoder_inputs_backward,
keep_conv,
keep_dense):
"""TODO(nh2tran): docstring."""
with variable_scope.variable_scope("embedding_rnn_decoder"):
with ops.device("/cpu:0"):
embedding = variable_scope.get_variable(
name="embedding",
shape=[deepnovo_config.vocab_size, deepnovo_config.embedding_size])
# nobi
decoder_inputs_forward_emb = [embedding_ops.embedding_lookup(embedding, x)
for x in decoder_inputs_forward]
decoder_inputs_backward_emb = [embedding_ops.embedding_lookup(embedding, x)
for x in decoder_inputs_backward]
return (decode_spectrum(encoded_spectrum,
intensity_inputs_forward,
decoder_inputs_forward_emb,
keep_conv,
keep_dense,
scope="rnn_decoder_forward"),
decode_spectrum(encoded_spectrum,
intensity_inputs_backward,
decoder_inputs_backward_emb,
keep_conv,
keep_dense,
scope="rnn_decoder_backward"))
def encode_spectrum(encoder_inputs,
intensity_inputs_forward,
intensity_inputs_backward,
decoder_inputs_forward,
decoder_inputs_backward,
keep_conv,
keep_dense):
"""TODO(nh2tran): docstring."""
with variable_scope.variable_scope("embedding_rnn_seq2seq"):
# spectra_holder
layer0 = tf.reshape(encoder_inputs[0], [-1, 1, deepnovo_config.MZ_SIZE, 1])
# conv1
conv1_W = variable_scope.get_variable(
name="conv1_W",
shape=[1, 4, 1, 4],
initializer=tf.uniform_unit_scaling_initializer(1.43))
conv1_B = variable_scope.get_variable(
name="conv1_B",
shape=[4],
initializer=tf.constant_initializer(0.1))
# conv2
conv2_W = variable_scope.get_variable(
name="conv2_W",
shape=[1, 4, 4, 4],
initializer=tf.uniform_unit_scaling_initializer(1.43))
conv2_B = variable_scope.get_variable(
name="conv2_B",
shape=[4],
initializer=tf.constant_initializer(0.1))
# pool1 [1, 1, 4, 1]
# conv3
#~ conv3_W = variable_scope.get_variable(
#~ name="conv3_W",
#~ shape=[1, 4, 4, 4],
#~ initializer=tf.uniform_unit_scaling_initializer(1.43))
#~ conv3_B = variable_scope.get_variable(
#~ name="conv3_B",
#~ shape=[4],
#~ initializer=tf.constant_initializer(0.1))
# pool2 [1, 1, 4, 1]
# dense1
dense1_input_size = 1 * (deepnovo_config.MZ_SIZE // (4)) * 4
dense1_output_size = 512
dense1_W = variable_scope.get_variable(
name="dense1_W",
shape=[dense1_input_size, dense1_output_size],
initializer=tf.uniform_unit_scaling_initializer(1.43))
dense1_B = variable_scope.get_variable(
name="dense1_B",
shape=[dense1_output_size],
initializer=tf.constant_initializer(0.1))
# dense2
#~ dense2_input_size = dense1_output_size
#~ dense2_output_size = 512
#~ dense2_W = variable_scope.get_variable(
#~ name="dense2_W",
#~ shape=[dense2_input_size, dense2_output_size],
#~ initializer=tf.uniform_unit_scaling_initializer(1.43))
#~ dense2_B = variable_scope.get_variable(
#~ name="dense2_B",
#~ shape=[dense2_output_size],
#~ initializer=tf.constant_initializer(0.1))
# layers
conv1 = tf.nn.relu(tf.nn.conv2d(layer0,
conv1_W,
strides=[1, 1, 1, 1],
padding='SAME')
+ conv1_B)
conv2 = tf.nn.relu(tf.nn.conv2d(conv1,
conv2_W,
strides=[1, 1, 1, 1],
padding='SAME')
+ conv2_B)
conv2 = tf.nn.max_pool(conv2,
ksize=[1, 1, 6, 1],
strides=[1, 1, 4, 1],
padding='SAME')
conv2 = tf.nn.dropout(conv2, keep_conv)
#~ conv3 = tf.nn.relu(tf.nn.conv2d(conv2,
#~ conv3_W,
#~ strides=[1, 1, 1, 1],
#~ padding='SAME')
#~ + conv3_B)
#~ conv3 = tf.nn.max_pool(conv3,
#~ ksize=[1, 1, 6, 1],
#~ strides=[1, 1, 4, 1],
#~ padding='SAME')
#~ conv3 = tf.nn.dropout(conv3, keep_conv)
dense1 = tf.reshape(conv2, [-1, dense1_input_size])
dense1 = tf.nn.relu(tf.matmul(dense1, dense1_W) + dense1_B)
dense1 = tf.nn.dropout(dense1, keep_dense)
#~ dense2 = tf.nn.relu(tf.matmul(dense1, dense2_W) + dense2_B)
#~ dense2 = tf.nn.dropout(dense2, keep_dense)
# SPECTRUM as Input 0
encoded_spectrum = dense1
#~ encoded_spectrum = tf.zeros(shape=array_ops.shape(layer_dense1_drop))
return embed_labels(encoded_spectrum,
intensity_inputs_forward,
intensity_inputs_backward,
decoder_inputs_forward,
decoder_inputs_backward,
keep_conv,
keep_dense)
def train(encoder_inputs,
intensity_inputs_forward,
intensity_inputs_backward,
decoder_inputs_forward,
decoder_inputs_backward,
targets_forward,
targets_backward,
target_weights,
keep_conv,
keep_dense):
"""TODO(nh2tran): docstring."""
all_inputs = (encoder_inputs
+ intensity_inputs_forward
+ intensity_inputs_backward
+ decoder_inputs_forward
+ decoder_inputs_backward
+ targets_forward
+ targets_backward
+ target_weights)
losses = []
outputs_forward = []
outputs_backward = []
#~ with tf.name_scope(name="model_with_buckets", values=all_inputs):
with ops.op_scope(all_inputs, name="model_with_buckets"):
for j, bucket in enumerate(deepnovo_config._buckets): # TODO(nh2tran): _buckets
with variable_scope.variable_scope(variable_scope.get_variable_scope(),
reuse=True if j > 0 else None):
# for testing
#~ bucket_outputs_forward, bucket_outputs_backward = encode_spectrum(
((bucket_outputs_forward,
penalty_forward),
(bucket_outputs_backward,
penalty_backward)) = encode_spectrum(encoder_inputs,
intensity_inputs_forward[:bucket],
intensity_inputs_backward[:bucket],
decoder_inputs_forward[:bucket],
decoder_inputs_backward[:bucket],
keep_conv,
keep_dense)
outputs_forward.append(bucket_outputs_forward)
outputs_backward.append(bucket_outputs_backward)
# losses depend on direction
if deepnovo_config.FLAGS.direction == 0:
losses.append(sequence_loss(outputs_forward[-1],
targets_forward[:bucket],
target_weights[:bucket],
name="sequence_loss_forward"))
elif deepnovo_config.FLAGS.direction == 1:
losses.append(sequence_loss(outputs_backward[-1],
targets_backward[:bucket],
target_weights[:bucket],
name="sequence_loss_backward"))
else:
losses.append((sequence_loss(outputs_forward[-1],
targets_forward[:bucket],
target_weights[:bucket],
name="sequence_loss_forward")
+ sequence_loss(outputs_backward[-1],
targets_backward[:bucket],
target_weights[:bucket],
name="sequence_loss_backward")) / 2)
# for testing
losses[-1] += penalty_forward + penalty_backward
return outputs_forward, outputs_backward, losses