forked from nh2tran/DeepNovo
-
Notifications
You must be signed in to change notification settings - Fork 1
/
deepnovo_misc.py
962 lines (750 loc) · 29.3 KB
/
deepnovo_misc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
# Copyright 2017 Hieu Tran. All Rights Reserved.
#
# DeepNovo is publicly available for non-commercial uses.
# ==============================================================================
"""TODO(nh2tran): docstring."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import random
import sys
import re
import numpy as np
import deepnovo_config
random.seed(0)
np.random.seed(0)
def cat_file_mgf(input_file_list, fraction_list, output_file):
"""TODO(nh2tran): docstring."""
print("cat_file_mgf()")
counter = 0
with open(output_file, mode="w") as output_handle:
for index, input_file in enumerate(input_file_list):
print("input_file = ", os.path.join(input_file))
with open(input_file, mode="r") as input_handle:
line = input_handle.readline()
while line:
if "SCANS=" in line: # a spectrum found
counter += 1
scan = int(re.split('=', line)[1])
# re-number scan id
output_handle.write("SCANS=F{0}:{1}\n".format(
fraction_list[index], scan))
else:
output_handle.write(line)
line = input_handle.readline()
print("counter ", counter)
#~ number_fraction = 72
#~ cat_file_mgf(["data.training/yeast.low.takeda_2015/peaks.db/"
#~ + str(i) + "_frac.mgf"
#~ for i in range(1, number_fraction + 1)],
#~ range(1, number_fraction + 1),
#~ "data.training/yeast.low.takeda_2015/peaks.db.mgf")
def partition_train_valid_test_dup_mgf(input_file, prob):
"""TODO(nh2tran): docstring.
Partition a dataset into three random sets train-valid-test with a
distribution, e.g. 90-5-5 percent.
"""
print("partition_train_valid_test_dup_mgf()")
print("input_file = ", os.path.join(input_file))
print("prob = ", prob)
output_file_train = input_file + ".train" + ".dup"
output_file_valid = input_file + ".valid" + ".dup"
output_file_test = input_file + ".test" + ".dup"
with open(input_file, mode="r") as input_handle:
with open(output_file_train, mode="w") as output_handle_train:
with open(output_file_valid, mode="w") as output_handle_valid:
with open(output_file_test, mode="w") as output_handle_test:
counter = 0
counter_train = 0
counter_valid = 0
counter_test = 0
line = input_handle.readline()
while line:
if "BEGIN IONS" in line: # a spectrum found
counter += 1
set_num = np.random.choice(a=3, size=1, p=prob)
if set_num == 0:
output_handle = output_handle_train
counter_train += 1
elif set_num == 1:
output_handle = output_handle_valid
counter_valid += 1
else:
output_handle = output_handle_test
counter_test += 1
output_handle.write(line)
line = input_handle.readline()
input_handle.close()
output_handle_train.close()
output_handle_valid.close()
output_handle_test.close()
print("counter ", counter)
print("counter_train ", counter_train)
print("counter_valid ", counter_valid)
print("counter_test ", counter_test)
#~ partition_train_valid_test_dup_mgf(
#~ "data.training/yeast.low.coon_2013/peaks.db.mgf.test.dup",
#~ [0.10, 0.90, 0.00])
def partition_train_valid_test_unique_mgf(input_file, prob):
"""TODO(nh2tran): docstring.
Partition a dataset into three random sets train-valid-test with a
distribution, e.g. 90-5-5 percent.
This version removes all duplicated peptides so that each peptide has only
one spectrum (selected randomly).
"""
print("partition_train_valid_test_unique_mgf()")
print("input_file = ", os.path.join(input_file))
print("prob = ", prob)
output_file_train = input_file + ".train" + ".unique"
output_file_valid = input_file + ".valid" + ".unique"
output_file_test = input_file + ".test" + ".unique"
peptide_list = []
with open(input_file, mode="r") as input_handle:
with open(output_file_train, mode="w") as output_handle_train:
with open(output_file_valid, mode="w") as output_handle_valid:
with open(output_file_test, mode="w") as output_handle_test:
counter = 0
counter_train = 0
counter_valid = 0
counter_test = 0
line = input_handle.readline()
while line:
if "BEGIN IONS" in line: # a spectrum found
line_buffer = []
line_buffer.append(line)
# TITLE
line = input_handle.readline()
line_buffer.append(line)
# PEPMASS
line = input_handle.readline()
line_buffer.append(line)
# CHARGE
line = input_handle.readline()
line_buffer.append(line)
# SCANS
line = input_handle.readline()
line_buffer.append(line)
# RTINSECONDS
line = input_handle.readline()
line_buffer.append(line)
# SEQ
line = input_handle.readline()
line_buffer.append(line)
peptide = re.split('=|\n|\r', line)[1]
if not peptide in peptide_list: # new peptide
peptide_list.append(peptide)
counter += 1
set_num = np.random.choice(a=3, size=1, p=prob)
if set_num == 0:
output_handle = output_handle_train
counter_train += 1
elif set_num == 1:
output_handle = output_handle_valid
counter_valid += 1
else:
output_handle = output_handle_test
counter_test += 1
for l in line_buffer:
output_handle.write(l)
while line and not "END IONS" in line:
line = input_handle.readline()
output_handle.write(line)
output_handle.write("\n")
line = input_handle.readline()
print("counter ", counter)
print("counter_train ", counter_train)
print("counter_valid ", counter_valid)
print("counter_test ", counter_test)
#~ partition_train_valid_test_unique_mgf("data/human.PXD002179.sds/peaks.db.mgf",
#~ [1.0, 0.0, 0.0])
def partition_train_valid_test_unique_control_mgf(input_file,
prob,
max_spectra_per_peptide):
"""TODO(nh2tran): docstring.
Partition a dataset into three random sets train-valid-test with a
distribution, e.g. 90-5-5 percent.
This version removes duplicated peptides so that each peptide has at most
max_spectra_per_peptide (selected randomly).
"""
print("partition_train_valid_test_unique_control_mgf()")
print("input_file = ", os.path.join(input_file))
print("prob = ", prob)
output_file_train = (input_file + ".train" + ".unique"
+ str(max_spectra_per_peptide))
output_file_valid = (input_file + ".valid" + ".unique"
+ str(max_spectra_per_peptide))
output_file_test = (input_file + ".test" + ".unique"
+ str(max_spectra_per_peptide))
peptide_list = []
peptide_spectra_count = {}
with open(input_file, mode="r") as input_handle:
with open(output_file_train, mode="w") as output_handle_train:
with open(output_file_valid, mode="w") as output_handle_valid:
with open(output_file_test, mode="w") as output_handle_test:
counter = 0
counter_train = 0
counter_valid = 0
counter_test = 0
line = input_handle.readline()
while line:
if "BEGIN IONS" in line: # a spectrum found
line_buffer = []
line_buffer.append(line)
# TITLE
line = input_handle.readline()
line_buffer.append(line)
# PEPMASS
line = input_handle.readline()
line_buffer.append(line)
# CHARGE
line = input_handle.readline()
line_buffer.append(line)
# SCANS
line = input_handle.readline()
line_buffer.append(line)
# RTINSECONDS
line = input_handle.readline()
line_buffer.append(line)
# SEQ
line = input_handle.readline()
line_buffer.append(line)
peptide = re.split('=|\n|\r', line)[1]
if not peptide in peptide_list: # new peptide
peptide_list.append(peptide)
peptide_spectra_count[peptide] = 0
if peptide_spectra_count[peptide] < max_spectra_per_peptide:
peptide_spectra_count[peptide] += 1
counter += 1
set_num = np.random.choice(a=3, size=1, p=prob)
if set_num == 0:
output_handle = output_handle_train
counter_train += 1
elif set_num == 1:
output_handle = output_handle_valid
counter_valid += 1
else:
output_handle = output_handle_test
counter_test += 1
for l in line_buffer:
output_handle.write(l)
while line and not "END IONS" in line:
line = input_handle.readline()
output_handle.write(line)
output_handle.write("\n")
line = input_handle.readline()
print("counter ", counter)
print("counter_train ", counter_train)
print("counter_valid ", counter_valid)
print("counter_test ", counter_test)
#~ partition_train_valid_test_unique_control_mgf(
#~ "data/human.cancer/peaks.db.frac_1_10.mgf",
#~ [1.0, 0.0, 0.0],
#~ 4)
def partition_train_valid_test_repeat_mgf(input_file, prob):
"""TODO(nh2tran): docstring.
Partition a dataset into three random sets train-valid-test with a
distribution, e.g. 90-5-5 percent.
Each peptide may correspond to multiple different spectra but the three
sets do not share common peptides.
"""
print("partition_train_valid_test_repeat_mgf()")
print("input_file = ", os.path.join(input_file))
print("prob = ", prob)
output_file_train = input_file + ".train" + ".repeat"
output_file_valid = input_file + ".valid" + ".repeat"
output_file_test = input_file + ".test" + ".repeat"
peptide_train_list = []
peptide_valid_list = []
peptide_test_list = []
with open(input_file, mode="r") as input_handle:
with open(output_file_train, mode="w") as output_handle_train:
with open(output_file_valid, mode="w") as output_handle_valid:
with open(output_file_test, mode="w") as output_handle_test:
counter = 0
counter_train = 0
counter_valid = 0
counter_test = 0
counter_unique = 0
line = input_handle.readline()
while line:
if "BEGIN IONS" in line: # a spectrum found
line_buffer = []
line_buffer.append(line)
# TITLE
line = input_handle.readline()
line_buffer.append(line)
# PEPMASS
line = input_handle.readline()
line_buffer.append(line)
# CHARGE
line = input_handle.readline()
line_buffer.append(line)
# SCANS
line = input_handle.readline()
line_buffer.append(line)
# RTINSECONDS
line = input_handle.readline()
line_buffer.append(line)
# SEQ
line = input_handle.readline()
line_buffer.append(line)
peptide = re.split('=|\n|\r', line)[1]
# found a spectrum and a peptide
counter += 1
# check if the peptide already exists in any of the three lists
# if yes, this new spectrum will be assigned to that list
if peptide in peptide_train_list:
output_handle = output_handle_train
counter_train += 1
elif peptide in peptide_valid_list:
output_handle = output_handle_valid
counter_valid += 1
elif peptide in peptide_test_list:
output_handle = output_handle_test
counter_test += 1
# if not, this new peptide and its spectrum will be randomly
# assigned
else:
counter_unique += 1
set_num = np.random.choice(a=3, size=1, p=prob)
if set_num == 0:
peptide_train_list.append(peptide)
output_handle = output_handle_train
counter_train += 1
elif set_num == 1:
peptide_valid_list.append(peptide)
output_handle = output_handle_valid
counter_valid += 1
else:
peptide_test_list.append(peptide)
output_handle = output_handle_test
counter_test += 1
for l in line_buffer:
output_handle.write(l)
while line and not "END IONS" in line:
line = input_handle.readline()
output_handle.write(line)
output_handle.write("\n")
line = input_handle.readline()
print("counter ", counter)
print("counter_train ", counter_train)
print("counter_valid ", counter_valid)
print("counter_test ", counter_test)
print("counter_unique ", counter_unique)
#~ partition_train_valid_test_repeat_mgf(
#~ "data.training/yeast.low.heinemann_2015/peaks.db.mgf",
#~ [0.90, 0.05, 0.05])
def prepare_test_file(input_file):
"""TODO(nh2tran): docstring.
Filter spectra with MZ_MAX, unknown_modification.
Extract ground-truth peptide sequences from database-search.
"""
print("prepare_test_file()")
print("input_file = ", os.path.join(input_file))
dbseq_file = input_file + ".dbseq"
print("dbseq_file = ", dbseq_file)
counter = 0
counter_skipped = 0
counter_skipped_mod = 0
counter_skipped_len = 0
counter_skipped_mass = 0
with open(input_file, mode="r") as input_handle:
with open(dbseq_file, mode="w") as dbseq_handle:
print("scan \t target_seq \n", file=dbseq_handle, end="")
line = input_handle.readline()
while line:
if "BEGIN IONS" in line: # a spectrum found
line_buffer = []
line_buffer.append(line)
unknown_modification = False
# header TITLE
line = input_handle.readline()
line_buffer.append(line)
# header PEPMASS
line = input_handle.readline()
peptide_ion_mz = float(re.split('=|\n', line)[1])
line_buffer.append(line)
# header CHARGE
line = input_handle.readline()
charge = float(re.split('=|\+', line)[1]) # pylint: disable=anomalous-backslash-in-string
line_buffer.append(line)
# header SCANS
line = input_handle.readline()
#~ scan = int(re.split('=', line)[1])
scan = re.split('=|\n', line)[1]
line_buffer.append(line)
# header RTINSECONDS
line = input_handle.readline()
line_buffer.append(line)
# header SEQ
line = input_handle.readline()
line_buffer.append(line)
raw_sequence = re.split('=|\n|\r', line)[1]
raw_sequence_len = len(raw_sequence)
peptide = []
index = 0
while index < raw_sequence_len:
if raw_sequence[index] == "(":
if (peptide[-1] == "C"
and raw_sequence[index:index+8] == "(+57.02)"):
peptide[-1] = "Cmod"
index += 8
elif (peptide[-1] == 'M'
and raw_sequence[index:index+8] == "(+15.99)"):
peptide[-1] = 'Mmod'
index += 8
elif (peptide[-1] == 'N'
and raw_sequence[index:index+6] == "(+.98)"):
peptide[-1] = 'Nmod'
index += 6
elif (peptide[-1] == 'Q'
and raw_sequence[index:index+6] == "(+.98)"):
peptide[-1] = 'Qmod'
index += 6
else: # unknown modification
#~ elif ("".join(raw_sequence[index:index+8])=="(+42.01)"):
#~ print("ERROR: unknown modification!")
#~ print("raw_sequence = ", raw_sequence)
#~ sys.exit()
unknown_modification = True
break
else:
peptide.append(raw_sequence[index])
index += 1
# skip if unknown_modification
if unknown_modification:
counter_skipped += 1
counter_skipped_mod += 1
continue
# skip if neutral peptide_mass > MZ_MAX(3000.0)
peptide_mass = peptide_ion_mz*charge - charge*deepnovo_config.mass_H
if peptide_mass > deepnovo_config.MZ_MAX:
counter_skipped += 1
counter_skipped_mass += 1
continue
# TRAINING-SKIP: skip if peptide length > MAX_LEN(30)
# TESTING-ERROR: not allow peptide length > MAX_LEN(50)
peptide_len = len(peptide)
if peptide_len > deepnovo_config.MAX_LEN:
print("ERROR: peptide_len {0} exceeds MAX_LEN {1}".format(
peptide_len,
deepnovo_config.MAX_LEN))
sys.exit()
#~ counter_skipped += 1
#~ counter_skipped_len += 1
#~ continue
# AN ENTRY FOUND
counter += 1
if counter % 10000 == 0:
print(" reading peptide %d" % counter)
# output ground-truth peptide sequence
print("%s\t%s\n" % (scan, ",".join(peptide)),
file=dbseq_handle,
end="")
while line and not "END IONS" in line:
line = input_handle.readline()
line = input_handle.readline()
print(" total peptide read %d" % counter)
print(" total peptide skipped %d" % counter_skipped)
print(" total peptide skipped by mod %d" % counter_skipped_mod)
print(" total peptide skipped by len %d" % counter_skipped_len)
print(" total peptide skipped by mass %d" % counter_skipped_mass)
#~ prepare_test_file("data.training/yeast.low.takeda_2015/peaks.db.mgf")
def partition_dbseq(dbseq_file, trainseq_file):
"""TODO(nh2tran): docstring.
Partition a dbseq file into 2 sets: overlapping & nonoverlapping with the
trainseq file.
"""
print("partition_dbseq()")
print("dbseq_file = ", dbseq_file)
print("trainseq_file = ", trainseq_file)
trainseq = []
with open(trainseq_file, mode="r") as trainseq_handle:
# header
trainseq_handle.readline()
for line in trainseq_handle:
line_split = re.split('\t|\n', line)
#~ scan = line_split[0]
peptide = line_split[1]
trainseq.append(peptide)
overlap_file = dbseq_file + ".overlap"
nonoverlap_file = dbseq_file + ".nonoverlap"
count = 0
count_overlap = 0
count_nonoverlap = 0
with open(dbseq_file, mode="r") as dbseq_handle:
with open(overlap_file, mode="w") as overlap_handle:
with open(nonoverlap_file, mode="w") as nonoverlap_handle:
# header
line = dbseq_handle.readline()
overlap_handle.write(line)
nonoverlap_handle.write(line)
for line in dbseq_handle:
line_split = re.split('\t|\n', line)
#~ scan = line_split[0]
peptide = line_split[1]
if peptide in trainseq:
overlap_handle.write(line)
count_overlap += 1
else:
nonoverlap_handle.write(line)
count_nonoverlap += 1
count += 1
print("count = {0:d}".format(count))
print("count_overlap = {0:d}".format(count_overlap))
print("count_nonoverlap = {0:d}".format(count_nonoverlap))
#~ partition_dbseq("data/human.cancer/peaks.db.frac_21_41.mgf.dbseq",
#~ "data/human.cancer/peaks.db.frac_1_20.mgf.dbseq")
def read_dbseq(dbseq_file):
"""TODO(nh2tran): docstring."""
print("read_dbseq()")
print("dbseq_file = ", dbseq_file)
dbseq = {}
batch_len_AA = 0.0
with open(dbseq_file, mode="r") as dbseq_handle:
# header
dbseq_handle.readline()
for line in dbseq_handle:
line_split = re.split('\t|\n', line)
scan = line_split[0]
peptide = re.split(',', line_split[1])
dbseq[scan] = [deepnovo_config.vocab[x] for x in peptide]
batch_len_AA += len(peptide)
batch_size = len(dbseq)
print("batch_size = ", batch_size)
print("batch_len_AA = ", batch_len_AA)
return dbseq, batch_size, batch_len_AA
def read_novonet(novonet_file):
"""TODO(nh2tran): docstring."""
print("read_novonet()")
print("novonet_file = ", novonet_file)
novonet = {}
with open(novonet_file, mode="r") as novonet_handle:
# header
novonet_handle.readline()
for line in novonet_handle:
line_split = re.split('\t|\n', line)
scan = line_split[0]
if line_split[2] == "": # empty output
novonet_seq_id = []
else:
novonet_seq = re.split(',', line_split[2])
novonet_seq_id = [deepnovo_config.vocab[x] for x in novonet_seq]
novonet[scan] = novonet_seq_id
return novonet
def read_peaks(peaks_denovo_file, peaks_format, alc_threshold):
"""TODO(nh2tran): docstring."""
print("read_peaks()")
print("peaks_denovo_file = ", peaks_denovo_file)
if peaks_format == "old_7.5":
peptide_column = 1
alc_column = 3
elif peaks_format == "new_8.0":
peptide_column = 3
alc_column = 5
else:
print("ERROR: wrong PEAKS denovo format")
sys.exit()
peaks = {}
peaks_raw = {}
with open(peaks_denovo_file, mode="r") as peaks_handle:
# header
peaks_handle.readline()
for line in peaks_handle:
line_split = re.split(",", line)
if peaks_format == "old_7.5":
scan = line_split[0]
elif peaks_format == "new_8.0":
scan = "F" + line_split[0] + ":" + line_split[1]
if line_split[peptide_column] == "": # empty output
peaks_seq_id = []
else:
raw_sequence = line_split[peptide_column]
raw_sequence_len = len(raw_sequence)
peptide = []
index = 0
while index < raw_sequence_len:
if raw_sequence[index] == "(":
if peptide[-1] == "C" and raw_sequence[index:index+8] == "(+57.02)":
peptide[-1] = "Cmod"
index += 8
elif peptide[-1] == 'M' and raw_sequence[index:index+8] == "(+15.99)":
peptide[-1] = 'Mmod'
index += 8
elif peptide[-1] == 'N' and raw_sequence[index:index+6] == "(+.98)":
peptide[-1] = 'Nmod'
index += 6
elif peptide[-1] == 'Q' and raw_sequence[index:index+6] == "(+.98)":
peptide[-1] = 'Qmod'
index += 6
else: # unknown modification
#~ elif ("".join(raw_sequence[index:index+8])=="(+42.01)"):
#~ print("ERROR: unknown modification!")
#~ print("raw_sequence = ", raw_sequence)
#~ sys.exit()
unknown_modification = True
break
else:
peptide.append(raw_sequence[index])
index += 1
peaks_seq_id = [deepnovo_config.vocab[x] for x in peptide]
alc_score = float(line_split[alc_column])
if alc_score >= alc_threshold:
peaks[scan] = peaks_seq_id
peaks_raw[scan] = raw_sequence
return peaks, peaks_raw
def get_peaks_denovo_spectra(output_spectra_file,
raw_spectra_file,
peaks_denovo_file,
peaks_format,
alc_threshold=0):
"""TODO(nh2tran): docstring."""
print("get_peaks_denovo_spectra()")
print("peaks_denovo_file = ", peaks_denovo_file)
print("ALC cut-off = ", alc_threshold)
print("raw_spectra_file = ", raw_spectra_file)
_, peaks_denovo_peptides = read_peaks(peaks_denovo_file,
peaks_format,
alc_threshold)
print("peaks_denovo_peptides: ", len(peaks_denovo_peptides))
counter_spectra = 0
with open(raw_spectra_file, mode="r") as input_handle:
with open(output_spectra_file, mode="w") as output_handle:
line = input_handle.readline()
while line:
if "BEGIN IONS" in line: # a spectrum found
line_buffer = []
line_buffer.append(line)
# header TITLE
line = input_handle.readline()
line_buffer.append(line)
# header PEPMASS
line = input_handle.readline()
line_buffer.append(line)
# header CHARGE
line = input_handle.readline()
line_buffer.append(line)
# header SCANS
line = input_handle.readline()
#~ scan = int(re.split('=', line)[1])
scan = re.split('=|\n', line)[1]
line_buffer.append(line)
# lookup scan id
if not scan in peaks_denovo_peptides:
continue
else:
counter_spectra += 1
for l in line_buffer:
output_handle.write(l)
# RTINSECONDS
line = input_handle.readline()
output_handle.write(line)
# SEQ
line = "SEQ=" + peaks_denovo_peptides[scan] + "\n"
output_handle.write(line)
while line and not "END IONS" in line:
line = input_handle.readline()
output_handle.write(line)
output_handle.write("\n")
line = input_handle.readline()
print("total spectra found %d" % counter_spectra)
def test_AA_match_novor(decoder_input, output):
"""TODO(nh2tran): docstring."""
num_match = 0
decoder_input_len = len(decoder_input)
output_len = len(output)
decoder_input_mass = [deepnovo_config.mass_ID[x] for x in decoder_input]
decoder_input_mass_cum = np.cumsum(decoder_input_mass)
output_mass = [deepnovo_config.mass_ID[x] for x in output]
output_mass_cum = np.cumsum(output_mass)
i = 0
j = 0
while i < decoder_input_len and j < output_len:
if abs(decoder_input_mass_cum[i] - output_mass_cum[j]) < 0.5:
if abs(decoder_input_mass[i] - output_mass[j]) < 0.1:
#~ if decoder_input[index_aa] == output[index_aa]:
num_match += 1
i += 1
j += 1
elif decoder_input_mass_cum[i] < output_mass_cum[j]:
i += 1
else:
j += 1
return num_match
def test_accuracy(dbseq_file,
denovo_file,
tool,
peaks_format=None,
alc_threshold=None):
"""TODO(nh2tran): docstring."""
print("test_accuracy()")
batch_accuracy_AA = 0.0
batch_len_decode = 0.0
num_exact_match = 0.0
num_len_match = 0.0
dbseq, batch_size, batch_len_AA = read_dbseq(dbseq_file)
if tool == "novonet":
denovo = read_novonet(denovo_file)
elif tool == "peaks":
denovo, _ = read_peaks(denovo_file, peaks_format, alc_threshold)
count_skipped = 0
# for testing
test_output = dict.fromkeys(dbseq.keys(), [])
for scan, seq in denovo.iteritems():
if scan in dbseq:
accuracy_AA = test_AA_match_novor(dbseq[scan], seq)
len_AA = len(dbseq[scan])
# for testing
output_seq = [deepnovo_config.vocab_reverse[x] for x in seq]
test_output[scan] = [output_seq, accuracy_AA]
len_decode = len(seq)
batch_len_decode += len_decode
batch_accuracy_AA += accuracy_AA
#~ batch_accuracy_AA += accuracy_AA/len_AA
if accuracy_AA == len_AA:
num_exact_match += 1.0
if len(seq) == len_AA:
num_len_match += 1.0
else:
count_skipped += 1
# for testing
with open("test_accuracy.tab", "w") as file_handle:
file_handle.write("scan \t target_seq \t target_len \t output_seq \t "
"accuracy_AA \n")
for scan, output in test_output.iteritems():
target_seq = [deepnovo_config.vocab_reverse[x] for x in dbseq[scan]]
target_len = len(target_seq)
if not output:
file_handle.write("{0:s}\t{1:s}\t{2:d}\t{3:s}\t{4:d}\n".format(
scan,
target_seq,
target_len,
[],
0))
else:
file_handle.write("{0:s}\t{1:s}\t{2:d}\t{3:s}\t{4:d}\n".format(
scan,
target_seq,
target_len,
output[0],
output[1]))
print(" recall_AA %.4f" % (batch_accuracy_AA / batch_len_AA))
#~ print(" accuracy_AA %.4f" % (batch_accuracy_AA / batch_size))
print(" precision_AA %.4f" % (batch_accuracy_AA / batch_len_decode))
print(" recall_peptide %.4f" % (num_exact_match / batch_size))
print(" recall_len %.4f" % (num_len_match / batch_size))
print(" count_skipped (not in dbseq) %d" % (count_skipped))
# NovoNet
#~ test_accuracy(
#~ "data/yeast.full/peaks.db.frac_456.mgf.dbseq",
#~ "train/train.intensity_only.yeast.full.db.frac_123.repeat/decode_output.db.tab",
#~ "novonet")
# PEAKS
#~ test_accuracy(
#~ "data.training/yeast.low.takeda_2015/peaks.db.mgf.dbseq",
#~ "data.training/yeast.low.takeda_2015/peaks.denovo.csv",
#~ "peaks",
#peaks_format="old_7.5",
#~ peaks_format="new_8.0",
#~ alc_threshold=0)