forked from danikiyasseh/CLOPS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare_miscellaneous.py
250 lines (225 loc) · 10.4 KB
/
prepare_miscellaneous.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Apr 27 19:46:09 2020
@author: Dani Kiyasseh
"""
#%%
""" Functions in this Script
1) change_lr
2) change_weight_decay
3) obtain_loss_function
4) obtain_predictions
5) determine_classification_setting
6) save_config_weights
7) save_statistics
8) track_instance_params
9) save_continual_stats
10) obtain_martha_acc
11) obtain_martha_bwt
12) obtain_tstep_bwt
13) obtain_lambda_bwt
"""
#%%
import os
import torch
import numpy as np
import torch.nn as nn
from operator import itemgetter
import copy
#%%
def change_lr(epoch_count,optimizer):
""" Manually change (multiplicative) learning rate at pre-defined epochs """
transition_epochs = None
scale = 0.5
if transition_epochs is not None:
if epoch_count == transition_epochs[0]:
for param_group in optimizer.param_groups:
param_group['lr'] = param_group['lr']*scale
print('LR: %.5f' % param_group['lr'])
def change_weight_decay(epoch_count,optimizer):
""" Manually change (additive) weight decay at pre-defined epochs """
transition_epochs = None #[8]
scale = 1e-1
if transition_epochs is not None:
if epoch_count == transition_epochs[0]:
for param_group in optimizer.param_groups:
param_group['weight_decay'] = param_group['weight_decay'] + scale
print('Weight Decay: %.5f' % param_group['weight_decay'])
def obtain_loss_function(phase,classification,dataloaders_list,pos_weight=1,imbalance_penalty=None):
if classification is not None:
nclasses = classification.split('-')[0]
if 'train' in phase:
""" Dataloader - Image-Based """
#train_indices = dataloaders_list[0]['train'].batch_sampler.sampler.data_source.indices
#all_outputs = dataloaders_list[0]['train'].batch_sampler.sampler.data_source.outputs
all_outputs = dataloaders_list[0]['train1'].batch_sampler.sampler.data_source.label_array
if imbalance_penalty == True:
""" Obtain Weights for Optimizer (Class Imbalance) """
train_outputs = list(itemgetter(*train_indices)(all_outputs))
val,bins = np.histogram(train_outputs,nclasses)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
loss_weight = torch.tensor(max(val)/val,dtype=torch.float,device=device)
""" Define Optimizer """
if classification is not None and classification != '2-way':
criterion = nn.CrossEntropyLoss(pos_weight=loss_weight)
criterion_single = nn.CrossEntropyLoss(pos_weight=loss_weight,reduction='none')
elif classification == '2-way':
criterion = nn.BCEWithLogitsLoss(pos_weight=loss_weight)
criterion_single = nn.BCEWithLogitsLoss(pos_weight=loss_weight,reduction='none')
else:
if classification is not None and classification != '2-way':
criterion = nn.CrossEntropyLoss()
criterion_single = nn.CrossEntropyLoss(reduction='none')
elif classification == '2-way':
criterion = nn.BCEWithLogitsLoss(pos_weight=torch.tensor(pos_weight))
criterion_single = nn.BCEWithLogitsLoss(reduction='none',pos_weight=torch.tensor(pos_weight))
elif classification is None:
criterion = nn.MSELoss()
criterion_single = nn.MSELoss(reduction='none')
""" Running Loss per Sample """
keys = np.arange(len(all_outputs))
values = [[] for _ in range(len(keys))]
per_sample_loss_dict = dict(zip(keys,values))
return per_sample_loss_dict, criterion, criterion_single
else:
if classification is not None and classification != '2-way':
criterion = nn.CrossEntropyLoss()
criterion_single = nn.CrossEntropyLoss(reduction='none')
elif classification == '2-way':
criterion = nn.BCEWithLogitsLoss()
criterion_single = nn.BCEWithLogitsLoss(reduction='none')
elif classification is None:
criterion = nn.MSELoss()
criterion_single = nn.MSELoss(reduction='none')
return criterion, criterion_single
def obtain_predictions(output_probs,device,classification):
if classification is not None and classification != '2-way':
_,preds = torch.max(output_probs,1)
elif classification == '2-way':
""" May have to Subtract Mean from Outputs Before Taking Sigmoid """
#preds = torch.where(torch.sigmoid(outputs)>0.5,torch.tensor(1,device=device),torch.tensor(0,device=device))
preds = torch.where(output_probs>0.5,torch.tensor(1,device=device),torch.tensor(0,device=device))
return preds
def determine_classification_setting(dataset_name,cl_scenario,trial):
if dataset_name == 'physionet':
classification = '5-way'
elif dataset_name == 'bidmc':
classification = '2-way'
elif dataset_name == 'mimic': #change this accordingly
classification = '2-way'
elif dataset_name == 'cipa':
classification = '7-way'
elif dataset_name == 'cardiology':
classification = '12-way'
if trial != 'multi_task_learning':
if cl_scenario == 'Class-IL':
classification = '2-way'
elif dataset_name == 'physionet2017':
classification = '4-way'
elif dataset_name == 'tetanus':
classification = '2-way'
elif dataset_name == 'ptb':
classification = '2-way'
elif dataset_name == 'fetal':
classification = '2-way'
elif dataset_name == 'physionet2016':
classification = '2-way'
elif dataset_name == 'physionet2020':
classification = '2-way' #because binary multilabel
elif dataset_name == 'chapman':
classification = '4-way'
elif dataset_name == 'cifar10':
classification = '10-way'
elif dataset_name == 'ptbxl':
classification = '2-way' #because binary multilabel
#print('Original Classification %s' % classification)
return classification
def save_config_weights(save_path_dir,best_model_weights):
torch.save(best_model_weights,os.path.join(save_path_dir,'finetuned_weight'))
def save_statistics(save_path_dir,prefix,acc_dict,loss_dict,auc_dict):
torch.save(acc_dict,os.path.join(save_path_dir,'%s_acc' % prefix))
torch.save(loss_dict,os.path.join(save_path_dir,'%s_loss' % prefix))
torch.save(auc_dict,os.path.join(save_path_dir,'%s_auc' % prefix))
def track_instance_params(epoch_count,task_instance_params_dict,tracked_instance_params_dict,current_task_info,new_task_epochs):
""" Track Task-Instance Params During Training """
task = current_task_info['current_task_dataset']
modality = current_task_info['current_modality']
leads = current_task_info['current_leads']
fraction = current_task_info['current_fraction']
class_pair = current_task_info['current_class_pair']
current_name = '-'.join((task,modality[0],str(fraction),leads,class_pair))
task_instance_params_dict_copy = copy.deepcopy(task_instance_params_dict)
for name,param_list in task_instance_params_dict_copy.items():
if name == current_name:
if epoch_count in new_task_epochs:
#tracked_instance_params_dict[name] = dict()
tracked_instance_params_dict[name] = {index:[] for index in range(len(param_list))}
for index,param in enumerate(param_list):
#if epoch_count == 0:
# tracked_instance_params_dict[name][index] = []
param = param.cpu().detach().item()
tracked_instance_params_dict[name][index].append(param)
#print(tracked_instance_params_dict[name][index])
return tracked_instance_params_dict,current_name
def save_continual_stats(save_path_dir,ave_dicts):
for dict_name,dict_entry in ave_dicts.items():
torch.save(dict_entry,os.path.join(save_path_dir,dict_name))
print('Continual Dicts Saved!')
def obtain_martha_acc(metric):
""" Obtain Acc as Described in Martha ICLR 2020 Paper """
validation_keys = [key for key in metric.keys() if 'val' in key]
final_values = []
for key in validation_keys:
print(key)
print(metric[key])
final_value = metric[key][-1]
#final_value = final_value.cpu().detach().numpy()
final_values.append(final_value)
#ave_value = np.mean(final_values)
return final_values
def obtain_martha_bwt(metric,new_task_epochs):
""" Obtain BWT as Described in Martha ICLR 2020 Paper """
validation_keys = [key for key in metric.keys() if 'val' in key][:-1]
task_epochs = new_task_epochs[1:]
diff = np.diff(new_task_epochs)[0]
bwt_values = []
for epoch,key in zip(task_epochs,validation_keys):
Rin = metric[key][-1]
Rii = metric[key][diff-1]
bwt = Rin - Rii
#bwt = bwt.cpu().detach().numpy()
bwt_values.append(bwt)
#ave_bwt = np.mean(bwt_values)
return bwt_values
def obtain_tstep_bwt(metric,new_task_epochs,step=1):
""" Average t-Step BWT for All Tasks """
validation_keys = [key for key in metric.keys() if 'val' in key][:-1] #all but last b/c you cant quantify forgetting for last task as no tasks follow it
task_epochs = new_task_epochs[1:]
diff = np.diff(new_task_epochs)[0]
bwt_values = []
for epoch,key in zip(task_epochs,validation_keys):
Rit = metric[key][diff-1 + diff*(step)]
Rii = metric[key][diff-1]
bwt = Rit - Rii
#bwt = bwt.cpu().detach().numpy()
bwt_values.append(bwt)
#ave_bwt = np.mean(bwt_values)
return bwt_values
def obtain_lambda_bwt(metric,new_task_epochs):
""" Average t-Step BWT for All Steps and All Tasks """
validation_keys = [key for key in metric.keys() if 'val' in key][:-1]
task_epochs = new_task_epochs[1:]
diff = np.diff(new_task_epochs)[0]
bwt_values = []
for epoch,key in zip(task_epochs,validation_keys):
current_epoch_index = np.where([epoch == ep for ep in task_epochs])[0][0]
steps = len(task_epochs) - current_epoch_index
for step in range(1,steps):
Rit = metric[key][diff-1 + diff*(step)]
Rii = metric[key][diff-1]
bwt = Rit - Rii
#bwt = bwt.cpu().detach().numpy()
bwt_values.append(bwt)
#ave_bwt = np.mean(bwt_values)
return bwt_values