Skip to content

Latest commit

 

History

History
380 lines (367 loc) · 14.4 KB

pretrained-models.md

File metadata and controls

380 lines (367 loc) · 14.4 KB

Model Zoo

Network for Customizing Your Denoiser!

The models provided in this section are meant for customizing your own denoiser! A summary of all the models will be available on Google Drive (we are working on it).
You can find the detailed step-by-step process in the demo.md.

We are currently dedicated to training an exceptionally capable network that can generalize well to various scenarios using only two data pairs! We will update this section once we achieve our goal. Stay tuned and look forward to it!
Or you can just use the following pretrained LED module for custumizing on your own cameras!.

Method Noise Model Phase Framework Training Strategy Additional Dgain (ratio) Camera Model Validation on 🔗 Download Links Config File
LED ELD (5 Virtual Cameras) Pretrain UNet PMN 100-300 - - [Google Drive] [options/LED/pretrain/MM22_PMN_Setting.yaml]
LED ELD (5 Virtual Cameras) Pretrain UNet ELD 100-300 - - [Google Drive] [options/LED/pretrain/CVPR20_ELD_Setting.yaml]
LED ELD (5 Virtual Cameras) Pretrain UNet ELD 1-200 - - [Google Drive] [options/LED/pretrain/CVPR20_ELD_Setting_Ratio1-200.yaml]
LED ELD (5 Virtual Cameras) Pretrain Restormer ELD 100-300 - - [Google Drive] [options/LED/other_arch/Restormer/LED+Restormer_Pretrain.yaml]
LED ELD (5 Virtual Cameras) Pretrain NAFNet ELD 100-300 - - [Google Drive] [options/LED/other_arch/NAFNet/LED+NAFNet_Pretrain.yaml]

Network for Benchmark

The models provided in this section are used to replicate the metrics in our paper, and you can find a summary of all the models on Google Drive or Baidu Clould.

Notice that, all the models are trained for bayer format.
Training Strategy determines the training strategy we use, you can find the specific method in their paper (ELD and PMN).
PMN* or ELD* for LED denotes the model is pretrained on that strategy.

Method Noise Model Phase Framework Training Strategy Additional Dgain (ratio) Camera Model Validation on 🔗 Download Links Config File
LED ELD (5 Virtual Cameras) Pretrain UNet PMN 100-300 - - [Google Drive] [options/LED/pretrain/MM22_PMN_Setting.yaml]
LED ELD (5 Virtual Cameras) Pretrain UNet ELD 100-300 - - [Google Drive] [options/LED/pretrain/CVPR20_ELD_Setting.yaml]
LED ELD (5 Virtual Cameras) Pretrain UNet ELD 1-200 - - [Google Drive] [options/LED/pretrain/CVPR20_ELD_Setting_Ratio1-200.yaml]
LED Real Noise (6 Pairs on SID SonyA7S2) Finetune / Deploy UNet PMN* 100-300 SonyA7S2 SID SonyA7S2 [Google Drive] [options/LED/finetune/SID_SonyA7S2_MM22_PMN_Setting.yaml]
LED Real Noise (6 Pairs on SID SonyA7S2) Finetune / Deploy UNet ELD* 100-300 SonyA7S2 SID SonyA7S2 [Google Drive] [options/LED/finetune/SID_SonyA7S2_CVPR20_ELD_Setting.yaml]
LED Real Noise (6 Pairs on SID SonyA7S2) Finetune / Deploy Restormer ELD* 100-300 SonyA7S2 SID SonyA7S2 [Google Drive] [options/LED/other_arch/Restormer/LED+Restormer_Finetune.yaml]
LED Real Noise (6 Pairs on SID SonyA7S2) Finetune / Deploy NAFNet ELD* 100-300 SonyA7S2 SID SonyA7S2 [Google Drive] [options/LED/other_arch/NAFNet/LED+NAFNet_Finetune.yaml]
LED Real Noise (24 Pairs on ELD SonyA7S2) Finetune / Deploy UNet ELD* 1-200 SonyA7S2 ELD SonyA7S2 [Google Drive] [options/LED/finetune/ELD_SonyA7S2_CVPR20_ELD_Setting.yaml]
LED Real Noise (24 Pairs on ELD NikonD850) Finetune / Deploy UNet ELD* 1-200 NikonD850 ELD NikonD850 [Google Drive] [options/LED/finetune/ELD_NikonD850_CVPR20_ELD_Setting.yaml]
ELD ELD (SonyA7S2) Deploy UNet PMN 100-300 SonyA7S2 SID SonyA7S2 [Google Drive] [options/ELD/SID_SonyA7S2_MM22_PMN_Setting.yaml]
ELD ELD (SonyA7S2) Deploy UNet ELD 100-300 SonyA7S2 SID SonyA7S2 [Google Drive] [options/ELD/SID_SonyA7S2_CVPR20_ELD_Setting.yaml]
ELD ELD (SonyA7S2) Deploy UNet ELD 1-200 SonyA7S2 ELD SonyA7S2 [Google Drive] [options/ELD/ELD_SonyA7S2_CVPR20_ELD_Setting.yaml]
ELD ELD (NikonD850) Deploy UNet ELD 1-200 NikonD850 ELD NikonD850 [Google Drive] [options/ELD/ELD_NikonD850_CVPR20_ELD_Setting.yaml]
P-G P-G (SonyA7S2) Deploy UNet ELD 100-300 SonyA7S2 SID SonyA7S2 [Google Drive] [options/P-G/SID_SonyA7S2_CVPR20_ELD_Setting.yaml]
P-G P-G (SonyA7S2) Deploy UNet ELD 1-200 SonyA7S2 ELD SonyA7S2 [Google Drive] [options/P-G/ELD_SonyA7S2_CVPR20_ELD_Setting.yaml]
P-G P-G (NikonD850) Deploy UNet ELD 1-200 NikonD850 ELD NikonD850 [Google Drive] [options/P-G/ELD_NikonD850_CVPR20_ELD_Setting.yaml]
SID Real Noise (SonyA7S2) Deploy UNet ELD 100-300 SonyA7S2 SID SonyA7S2 [Google Drive] [options/SID/SID_SonyA7S2_CVPR_ELD_Setting.yaml]

Noise Model

Type can be found in led/data/noise_utils/noise_generator.py.
p,g,t,r,q,c in Noise Type denotes shot, read (gaussian), read (tukey-lambda), row, quant noise and black level error, respectively.
All the noise model can be found in Google Drive or Baidu Cloud.

Type Noise Model Noise Type Camera Model 🔗 Download Links
VirtualNoisyPairGenerator ELD (5 Virtual Cameras) ptrqc Virtual Camera [Google Drive]
CalibratedNoisyPairGenerator ELD (SonyA7S2) ptrqc SonyA7S2 [Google Drive]
CalibratedNoisyPairGenerator ELD (NikonD850) ptrqc NikonD850 [Google Drive]
CalibratedNoisyPairGenerator P-G (SonyA7S2) pg SonyA7S2 [Google Drive]
CalibratedNoisyPairGenerator P-G (NikonD850) pg NikonD850 [Google Drive]