-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSeinfeld Text Mining Analysis with a slight Sentiment approach.Rmd
855 lines (619 loc) · 27.1 KB
/
Seinfeld Text Mining Analysis with a slight Sentiment approach.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
# ---
# title: "Seinfeld Text Mining Analysis with a slight Sentiment approach"
# Name: 'Yeo Yee Wen'
# ID: '18076950'
# ---
#
#Load Libraries
```{r,message=FALSE,warning=FALSE}
#setwd("......") - setting the working directory
# install.packages('tidyverse')
# install.packages('tidytext')
# install.packages('wordcloud')
# install.packages('stringr')
# install.packages('igraph')
# install.packages('ggraph')
# install.packages('widyr')
# install.packages('broom')
# install.packages('DT')
# install.packages('irlba')
# install.packages('topicmodels')
# install.packages('tm')
# install.packages('caret')
# install.packages('glmnet')
# install.packages('textdata')
# install.packages('hrbrthemes')
# install.packages('xgboost')
# install.packages('ggplot2')
# install.packages('dplyr')
# install.packages('gridExtra')
# install.packages('ggthemes')
# install.packages('RColorBrewer')
# install.packages('grid')
# install.packages('viridis')
# install.packages('lubridate')
# instrall.packages('readr')
# install.packages('plotly')
# install.packages('tidyyr')
library(tidyr) #create tidydata
library(tidyverse)
library(tidytext) # text manipulation
library(wordcloud) # word cloud
library(stringr) #string manipulation
library(igraph)
library(ggraph)
library(widyr)
library(broom)
library(DT)
library(irlba)
library(topicmodels) # for LDA topic modelling
library(tm) # general text mining functions, making document term matrixes
library(caret)
library(glmnet)
library(textdata) #To borrow an amazing package from notebook
library(xgboost) #To borrow an amazing package from notebook
library(ggplot2) #Plotting graph
library(dplyr)
library(gridExtra)
library(ggthemes)
library(RColorBrewer)#COLOUR
library(grid)
library(viridis)
library(lubridate)
library(readr)
library(plotly) #Plotting graph
library(hrbrthemes)
library(gganimate)
```
#Read the data
```{r,message=FALSE,warning=FALSE}
rm(list=ls())
#setting fill colour constraint
fillColor = "#FFA07A"
fillColor2 = "#F1C40F"
#reading the data from csv file
episode = read_csv("episode_info.csv")
scripts = read_csv("scripts.csv")
#creating a function scripts for x1 and dialogue
scripts = scripts %>%
rename(postID = X1) %>%
rename(text = Dialogue)
```
#Glimpse of Data{.tabset .tabset-fade .tabset-pills}
##Episode
```{r,message=FALSE,warning=FALSE}
#to view the data type and dataset
glimpse(episode)
View(episode)
```
##Scripts
```{r,message=FALSE,warning=FALSE}
#to view the data type and dataset
glimpse(scripts)
View(scripts)
```
#Who has Spoken more ?
```{r,message=FALSE,warning=FALSE}
#filer the top10 characters whom spoke most
Top10Characters = scripts %>%
group_by(Character) %>%
summarise(Count = n()) %>%
arrange(desc(Count)) %>%
ungroup() %>%
mutate(Character = reorder(Character,Count)) %>%
head(10)
Top10Characters %>%
ggplot(aes(x = Character,y = Count)) +
geom_bar(stat='identity',colour="white", fill = fillColor2) +
geom_text(aes(x = Character, y = 1, label = paste0("(",Count,")",sep="")),
hjust=0, vjust=.5, size = 4, colour = 'black',
fontface = 'bold') +
labs(x = 'Character',
y = 'Count',
title = 'Character and Count: Which Character spoke more?') +
coord_flip() +
theme_bw()
```
#Which Character spoke long Sentences?
```{r,message=FALSE,warning=FALSE}
#filer the top10 characters whom spoke the longest sentence
scripts$len = str_count(scripts$text)
scriptsTopTenCharacters = scripts %>%
filter(Character %in% Top10Characters$Character)
scriptsTopTenCharacters %>%
group_by(Character) %>%
summarise(CountMedian = median(len,na.rm = TRUE)) %>%
ungroup() %>%
mutate(Character = reorder(Character,CountMedian)) %>%
ggplot(aes(x = Character,y = CountMedian)) +
geom_bar(stat='identity',colour="white", fill = fillColor2) +
geom_text(aes(x = Character, y = 1, label = paste0("(",CountMedian,")",sep="")),
hjust=0, vjust=.5, size = 4, colour = 'black',
fontface = 'bold') +
labs(x = 'Character',
y = 'Count',
title = 'Character and Count: Which Character Spoke Long Sentences?') +
coord_flip() +
theme_bw()
```
#Tokenisation
#To break the text into individual tokens which are simply #individual words. This process is called tokenisation. This #is accomplished through the **unnest_tokens** function.
```{r,message=FALSE,warning=FALSE}
#Tokenisation
#To group a text according to a class object
scripts %>%
unnest_tokens(word, text) %>%
head(10)
```
```{r,message=FALSE,warning=FALSE}
#Remove the most Commonly occuring words in English language.
scripts %>%
unnest_tokens(word, text) %>%
filter(!word %in% stop_words$word) %>% head(10)
#Removing the Stop words
```
#Top Ten most Common Words
#Most common words include `yeah`,`jerry`,`hey`,`george`,`uh`
```{r}
#Top Ten most Common Words Overall Characters
createBarPlotCommonWords = function(train,title)
{
train %>%
unnest_tokens(word, text) %>%
filter(!word %in% stop_words$word) %>%
count(word,sort = TRUE) %>%
ungroup() %>%
mutate(word = factor(word, levels = rev(unique(word)))) %>%
head(10) %>%
ggplot(aes(x = word,y = n)) +
geom_bar(stat='identity',colour="white", fill =fillColor) +
geom_text(aes(x = word, y = 1, label = paste0("(",n,")",sep="")),
hjust=0, vjust=.5, size = 4, colour = 'black',
fontface = 'bold') +
labs(x = 'Word', y = 'Word Count',
title = title) +
coord_flip() +
theme_bw()
}
createBarPlotCommonWords(scripts,'Top 10 most Common Words Overall')
```
#BarPlot
```{r}
#Top Ten most Common Words for Jerry
createBarPlotCommonWords(scripts %>%
filter(str_detect(Character,"JERRY")),
'Top 10 most Common Words Of Jerry')
```
###BarPlot
```{r}
#Top Ten most Common Words for George
createBarPlotCommonWords(scripts %>%
filter(str_detect(Character,"GEORGE")),
'Top 10 most Common Words Of George')
```
###BarPlot
```{r}
#Top Ten most Common Words for Elaine
createBarPlotCommonWords(scripts %>%
filter(str_detect(Character,"ELAINE")),
'Top 10 most Common Words Of Elaine')
```
#Most Common Bigrams
```{r,message=FALSE,warning=FALSE}
#Creating a Bigram to separate which counts all repeating two words
count_bigrams <- function(dataset) {
dataset %>%
unnest_tokens(bigram, text, token = "ngrams", n = 2) %>%
separate(bigram, c("word1", "word2"), sep = " ") %>%
filter(!word1 %in% stop_words$word,
!word2 %in% stop_words$word) %>%
count(word1, word2, sort = TRUE)
}
visualize_bigrams <- function(bigrams) {
set.seed(2016)
a <- grid::arrow(type = "closed", length = unit(.15, "inches"))
bigrams %>%
graph_from_data_frame() %>%
ggraph(layout = "fr") +
geom_edge_link(aes(edge_alpha = n), show.legend = FALSE, arrow = a) +
geom_node_point(color = "lightblue", size = 5) +
geom_node_text(aes(label = name), vjust = 1, hjust = 1) +
theme_void()
}
visualize_bigrams_individual <- function(bigrams) {
set.seed(2016)
a <- grid::arrow(type = "closed", length = unit(.15, "inches"))
bigrams %>%
graph_from_data_frame() %>%
ggraph(layout = "fr") +
geom_edge_link(aes(edge_alpha = n), show.legend = FALSE, arrow = a,end_cap = circle(.07, 'inches')) +
geom_node_point(color = "lightblue", size = 5) +
geom_node_text(aes(label = name), vjust = 1, hjust = 1) +
theme_void()
}
scripts %>%
unnest_tokens(bigram, text, token = "ngrams", n = 2) %>%
separate(bigram, c("word1", "word2"), sep = " ") %>%
filter(!word1 %in% stop_words$word,
!word2 %in% stop_words$word) %>%
unite(bigramWord, word1, word2, sep = " ") %>%
group_by(bigramWord) %>%
tally() %>%
ungroup() %>%
arrange(desc(n)) %>%
mutate(bigramWord = reorder(bigramWord,n)) %>%
head(10) %>%
ggplot(aes(x = bigramWord,y = n)) +
geom_bar(stat='identity',colour="white", fill = fillColor2) +
geom_text(aes(x = bigramWord, y = 1, label = paste0("(",n,")",sep="")),
hjust=0, vjust=.5, size = 4, colour = 'black',
fontface = 'bold') +
labs(x = 'Bigram',
y = 'Count',
title = 'Bigram and Count') +
coord_flip() +
theme_bw()
```
#Most Common Trigrams
```{r,message=FALSE,warning=FALSE}
#Creating a Trigram to separate which counts all repeating two words
scripts %>%
unnest_tokens(trigram, text, token = "ngrams", n = 3) %>%
separate(trigram, c("word1", "word2","word3"), sep = " ") %>%
filter(!word1 %in% stop_words$word,
!word2 %in% stop_words$word,
!word3 %in% stop_words$word) %>%
unite(trigramWord, word1, word2, word3,sep = " ") %>%
group_by(trigramWord) %>%
tally() %>%
ungroup() %>%
arrange(desc(n)) %>%
mutate(trigramWord = reorder(trigramWord,n)) %>%
head(10) %>%
ggplot(aes(x = trigramWord,y = n)) +
geom_bar(stat='identity',colour="white", fill = fillColor) +
geom_text(aes(x = trigramWord, y = 1, label = paste0("(",n,")",sep="")),
hjust=0, vjust=.5, size = 4, colour = 'black',
fontface = 'bold') +
labs(x = 'Trigram',
y = 'Count',
title = 'Trigram and Count') +
coord_flip() +
theme_bw()
```
#Relationship among words
```{r,message=FALSE,warning=FALSE}
#Create a Relationship network among words
trainWords <- scripts %>%
count_bigrams()
trainWords %>%
filter(n > 10) %>%
visualize_bigrams()
```
#Relationship with the word **jerry** and **george** and **elaine** and **kramer**
```{r,message=FALSE,warning=FALSE}
#Analyzing the relationship word with **jerry** and **george** and **elaine** and **kramer**
trainWords %>%
filter(word1 == "jerry" | word2 == "jerry" |
word1 == "george" | word2 == "george" |
word1 == "elaine" | word2 == "elaine" |
word1 == "kramer" | word2 == "kramer") %>%
filter(n > 5) %>%
visualize_bigrams()
```
#Sentiment Analysis using **NRC Sentiment lexicon**
##Sentiment Analysis Words - Fear for Jerry
```{r,message=FALSE,warning=FALSE}
#Sentiment Analysis using **NRC Sentiment lexicon**
#The NRC Emotion Lexicon is a list of English words and their associations with eight basic emotions (anger, fear, anticipation, trust, surprise, sadness, joy, and
#Checking how feared is he
getEmotionalWords = function(emotion,Character)
{
nrcEmotions = get_sentiments("nrc") %>%
filter(sentiment == emotion)
emotionalWords = scripts %>%
unnest_tokens(word, text) %>%
filter(!word %in% stop_words$word) %>%
filter(Character == Character) %>%
inner_join(nrcEmotions) %>%
group_by(word) %>%
summarise(Count = n()) %>%
arrange(desc(Count))
return(emotionalWords)
}
FearWordsJerry = getEmotionalWords('fear','JERRY')
datatable(head(FearWordsJerry,10), style="bootstrap", class="table-condensed", options = list(dom = 'tp',scrollX = TRUE))
wordcloud(FearWordsJerry$word, FearWordsJerry$Count, max.words = 30,colors=brewer.pal(8, "Dark2"))
```
##Sentiment Analysis Words - Joy for Jerry
```{r,message=FALSE,warning=FALSE}
#Sentiment Analysis using **NRC Sentiment lexicon**
#The NRC Emotion Lexicon is a list of English words and their associations with eight basic emotions (anger, fear, anticipation, trust, surprise, sadness, joy, and
#Checking how full of joy is he
JoyWordsJerry = getEmotionalWords('joy','JERRY')
datatable(head(JoyWordsJerry,10), style="bootstrap", class="table-condensed", options = list(dom = 'tp',scrollX = TRUE))
wordcloud(JoyWordsJerry$word, JoyWordsJerry$Count, max.words = 30,colors=brewer.pal(8, "Dark2"))
```
##Sentiment Analysis Words - Surprise for Jerry
```{r,message=FALSE,warning=FALSE}
#Sentiment Analysis using **NRC Sentiment lexicon**
#The NRC Emotion Lexicon is a list of English words and their associations with eight basic emotions (anger, fear, anticipation, trust, surprise, sadness, joy, and
#Checking how suprised is he
SurpriseWordsJerry = getEmotionalWords('surprise','JERRY')
datatable(head(SurpriseWordsJerry,10), style="bootstrap", class="table-condensed", options = list(dom = 'tp',scrollX = TRUE))
wordcloud(SurpriseWordsJerry$word, SurpriseWordsJerry$Count, max.words = 30,colors=brewer.pal(8, "Dark2"))
```
## Character Level Analysis
```{r fig.height= 12, fig.width= 15}
# In terms of percentages, how often did each character speak?
top_50 <- bind_rows(scripts %>%
group_by(Character) %>%
summarise(n=n()) %>%
ungroup() %>%
filter(!grepl('setting',tolower(Character))) %>%
arrange(desc(n)) %>%
top_n(49),
scripts %>%
group_by(Character) %>%
summarise(n=n()) %>%
ungroup() %>%
arrange(desc(n)) %>%
tail(1590) %>%
mutate(n=sum(n)) %>%
mutate(Character='Others') %>%
unique())
p <- top_50 %>%
mutate(tot=sum(n)) %>%
mutate(percentage=n/tot) %>%
ggplot(aes(x=reorder(Character,percentage),y=percentage))+geom_bar(stat='identity')+
theme_ipsum()+coord_flip()+
labs(x='Characters',y='Percentage',title='Percentage of Dialogues by Character')+
scale_y_continuous(labels = scales::percent)+
geom_text(aes(label=stringr::str_c(as.character(round(percentage*100,2)),"%")), position=position_dodge(width=0.9),hjust=-0.5)
p
```
* Jerry had the highest percentage of dialogues obviously. This is then followed by George, Elaine,Kramer and Newman.
### Which character had the most diverse vocabulary?
```{r fig.height=10, fig.width= 15}
##Data
episodes = read_csv('episode_info.csv')
scripts = read.csv('scripts.csv', stringsAsFactors = FALSE)
scripts$Dialogue= str_to_lower(scripts$Dialogue)
#This is also called *lexical diversity* .This calculates the number of unique words divided by the total number of words used.
scripts %>%
select(SEID,Character,Dialogue) %>%
mutate(SEID=stringr::str_sub(SEID,1,3)) %>%
filter(Character %in% c("JERRY","ELAINE","GEORGE","KRAMER")) %>%
unnest_tokens(word,Dialogue) %>%
group_by(SEID,Character) %>%
summarise(total_number_of_words =n()) %>%
inner_join(scripts %>%
select(SEID,Character,Dialogue) %>%
mutate(SEID=stringr::str_sub(SEID,1,3)) %>%
filter(Character %in% c("JERRY","ELAINE","GEORGE","KRAMER")) %>%
unnest_tokens(word,Dialogue) %>%unique() %>% group_by(SEID,Character) %>% summarise(n_unique=n())) %>%
mutate(percentage_diversity=n_unique/total_number_of_words) %>%
ggplot(aes(x=Character,y=percentage_diversity))+geom_bar(stat = 'identity')+theme_ipsum()+facet_wrap(~SEID)+
coord_flip()+scale_y_continuous(labels=scales::percent)+labs(y='Percentage Diversity',title='Lexical Diversity Amongst Characters across Seasons')
```
### Which characters have had the most interactions with each other?
```{r fig.height=10, fig.width= 15}
#On way to visualize this is to look at conversions in pairs. Here, I have tried to construct a bi-gram of characters with the help of `tidytext`'s `unnest_tokens()` functions. This might not be entirely accurate due to the lack of continuity in dialogues when the scenes end. The frequency of the character to character bi-grams is used as the strength in the network.
scripts %>%
select(Character)%>%
mutate(Character= gsub(" ", "", Character, fixed = TRUE)) %>%
mutate(Character=paste(Character,collapse=' ')) %>%
unique() %>%
unnest_tokens(ngram, Character, token = "ngrams", n = 2) %>%
tidyr::separate(ngram,into=c('ch1','ch2'),sep=' ') %>%
group_by(ch1,ch2) %>%
summarise(n=n()) %>%
arrange(desc(n)) %>%
mutate(strength = ifelse(n>1000,'Strong','Weak')) %>%
filter(n>10) %>%
graph_from_data_frame() %>%
ggraph(layout = "fr") +
geom_edge_link(aes(edge_width=n,edge_colour=strength),alpha=0.2) +
geom_node_point() +
geom_node_text(aes(label = name), vjust = 1, hjust = 1,check_overlap = TRUE,size=5,color='#109876',fontface='bold')+
theme_ipsum()+
theme(axis.text = element_blank(),axis.title = element_blank(),panel.grid = element_blank(),legend.position = 'none')
```
```{r,message=FALSE,warning=FALSE}
##Data
episodes = read_csv('episode_info.csv')
scripts = read.csv('scripts.csv', stringsAsFactors = FALSE)
#fix strings
episodes$strfix = str_detect(episodes$Title, "(1)")
episodes$strfix2 = str_detect(episodes$Title, "(2)")
episodes$Title = ifelse(episodes$strfix ==TRUE | episodes$strfix2 ==TRUE, str_sub(episodes$Title, 1, -4), episodes$Title )
episodes$Title[episodes$Title == 'The Reverse Peephole (a.k.a. The Man Fur)'] = 'The Reverse Peephole'
episodes$Title = str_to_lower(episodes$Title)
scripts$Dialogue= str_to_lower(scripts$Dialogue)
##Merge data using dplyr
library(dplyr)
seinfeld = scripts %>%
left_join(episodes, by=c('EpisodeNo', 'SEID'))
##find name in scripts
seinfeld$New_Title = ifelse(str_sub(seinfeld$Title, 1, 3) =='the',
str_sub(seinfeld$Title, 4, -1), seinfeld$Title)
seinfeld$count = str_count(seinfeld$Dialogue ,seinfeld$New_Title)
#count by episode
title_count = seinfeld %>% group_by(Title, New_Title, Season.x, Director, Writers) %>%
summarise(count = sum(count))
title_count$Title = str_to_title(title_count$Title)
mean(title_count$count) #8.24
####Plot
top_episodes = subset(title_count, count >= 20)
top_episodes$Season.x = as.factor(top_episodes$Season.x)
top_episodes = top_episodes %>% mutate(Season = Season.x)
g = ggplot(top_episodes, aes(x=Title, y=count)) + geom_bar(stat = 'identity', aes(fill=Season)) +
ggtitle("The Most Times The Seinfeld Episode Title is Mentioned in The Episode") +
theme_bw() + ylab("Number of Times The Title is Said in The Episode") +
theme(axis.text.x = element_text(face = 'bold', angle=450), plot.title = element_text(hjust = 0.5))
g
print(ggplotly(g))#printing plotted graph
```
```{r setup, include=FALSE}
#scripts <- read.csv(file.path("input", "scripts.csv"), stringsAsFactors = F)
scripts <- read.csv("scripts.csv", stringsAsFactors = F)
main_characters <- c("ELAINE", "GEORGE", "JERRY", "KRAMER")
```
---
###Data cleaning
There are a few issues which need to be accounted for to make the data easier to process. Occasionally there is whitespace between an open-brackets and the direction text, easily fixable with a gsub regex
KRAMER Give me it..( tries to pull them off George's head)
The Character column mixes cases, usually main characters are capitalized however there are exceptions, particularly for "Elaine". easily fixed with a base-r function.
Usually stage directions are in round brackets, but some are in square. Another easy regex fix
```{r cleaning, include=FALSE}
#some initial cleaning:
#Elaine is sometines not in caps? fix
scripts$Character <- toupper(scripts$Character)
#occasioinally there is a space after an open-bracket. remove
scripts$Character <- gsub("\\(\\s+", "(", scripts$Character)
scripts$Dialogue <- gsub("\\(\\s+", "(", scripts$Dialogue)
scripts$Character <- gsub("\\[", "(", scripts$Character)
scripts$Dialogue <- gsub("\\[", "(", scripts$Dialogue)
scripts$Character <- gsub("\\]", ")", scripts$Character)
scripts$Dialogue <- gsub("\\]", ")", scripts$Dialogue)
w_stage_direction <- scripts %>%
filter(grepl("\\(", Dialogue))
```
```{r crunch1, include=FALSE}
extract_directions <- function(row_i){
text <- paste(w_stage_direction$Character[row_i], w_stage_direction$Dialogue[row_i])
text_splits <- strsplit(text, split="\\(") %>% unlist
direction_closes <- text_splits[grepl("\\)", text_splits)]
#there are some errors in the script, where a stage direction bracket is
#opend but not closed. skip these as it is hard to tell if/where it should
#be closed or if the whole line is direction
if(length(direction_closes) < 1) {
return(data.frame(direction=NA,Character=NA, EpisodeNo=NA, SEID=NA, Season=NA) )
}
direction_data <- data.frame(Character=w_stage_direction$Character[row_i],
direction=gsub("\\).*$", "", direction_closes),
EpisodeNo=w_stage_direction$EpisodeNo[row_i],
SEID=w_stage_direction$SEID[row_i],
Season=w_stage_direction$Season[row_i],
stringsAsFactors = F)
return(direction_data)
}
stage_direction_data_list <- lapply(1:nrow(w_stage_direction), extract_directions)
stage_direction_DF <- do.call("rbind", stage_direction_data_list)
#extract the first word of the direction
stage_direction_DF$first_word <- gsub("\\s.*$", "", stage_direction_DF$direction) %>% tolower()
#exclude stopwords
stage_direction_DF <- stage_direction_DF %>%
filter(!first_word %in% stopwords())
#if the first word is a character name, then this is actually a direction for
#another direction. correct and take the 2nd word
not_me <- stage_direction_DF %>% filter(first_word %in% (main_characters %>% tolower))
not_me$Character <- toupper(not_me$first_word)
not_me$first_word <- gsub("\\s.*$", "", sub("^[^\\s]*\\s", "", not_me$direction %>% tolower()))
stage_direction_DF <- rbind(stage_direction_DF %>%
filter(!first_word %in% (main_characters %>% tolower)),
not_me)
#work out which words are used to direct which character
main_character_directions <- stage_direction_DF %>%
filter(tolower(Character) %in% tolower(main_characters)) %>%
group_by(Character, first_word) %>%
summarise(ocs=n()) %>%
spread(Character, ocs)
#sum up total for each word
main_character_directions$all_count <- rowSums(main_character_directions[,2:5], na.rm = T)
#now calculate more stats per character per word for plotting
main_character_directions_stats <- main_character_directions %>%
gather(Character, character_count, -all_count, -first_word) %>%
filter(!is.na(character_count)) %>%
mutate(character_proportion=character_count/all_count)
```
###Amount of directions
First, a simple chart to see how much direction each character is given in the script
```{r most_dirsctions, echo=F, warning=F, message=F, fig.height = 5}
#see how much direction each character is given in the script
#who has been given most priority?
most_directions <- stage_direction_DF
most_directions$Character[!most_directions$Character %in% main_characters] <- "other"
most_directions <- most_directions %>%
group_by(Character) %>% summarise(direction_count=n())
p <- most_directions %>%
ggplot(aes(x=Character, y=direction_count, fill=Character)) + geom_bar(stat="identity") +
scale_fill_manual(values=brewer.pal(5, "Set2")) + ggtitle("Which character is given direction/priority in their respective given scripts?")
ggplotly(p, tooltip = c("direction_count"))
```
###How does this relate to quantity of lines?
```{r most_dirsctions2, echo=F, warning=F, message=F, fig.height = 5}
#Counting whom has the most number of lines
most_lines <- scripts
most_lines$Character[!most_lines$Character %in% main_characters] <- "other"
most_lines <- most_lines %>%
group_by(Character) %>% summarise(num_lines=n())
#assigned variable function
p <- most_lines %>%
ggplot(aes(x=Character, y=num_lines, fill=Character)) + geom_bar(stat="identity") +
scale_fill_manual(values=brewer.pal(5, "Set2")) + ggtitle("How many number of lines are given to each character in their scripts?")
ggplotly(p, tooltip = c("num_lines"))
```
And directions per-line:
```{r most_dirsctions3, echo=F, warning=F, message=F, fig.height = 5}
#Comparing overall between all main characters
directions_per_line <- left_join(most_lines, most_directions, by="Character")
directions_per_line$directions_per_line <- directions_per_line$direction_count / directions_per_line$num_lines
#assigned variable function
p <- directions_per_line %>%
ggplot(aes(x=Character, y=directions_per_line, fill=Character,
num_lines=num_lines, direction_count=direction_count)) +
geom_bar(stat="identity") +
scale_fill_manual(values=brewer.pal(5, "Set2")) + ggtitle("Comparing the directions of in a script, which lines are more prioritized by which character?")
ggplotly(p, tooltip = c("num_lines", "direction_count", "directions_per_line"))
```
```{r top_words, echo=F, warning=F, message=F, fig.height = 4, fig.width = 7}
#Analyzing the information details of each character's top words used in their script
top_words <- main_character_directions_stats %>%
group_by(Character) %>%
top_n(7, wt=character_count)
top_words_data <- main_character_directions_stats %>%
filter(first_word %in% top_words$first_word)
top_words_data$Character_number <- as.factor(top_words_data$Character) %>% as.numeric
first_word_order <- top_words_data %>%
filter(Character==main_characters[3]) %>%
arrange(character_proportion)
first_word_order <- first_word_order$first_word
top_words_data$first_word_f <- factor(top_words_data$first_word, levels = first_word_order)
p <- top_words_data %>%
arrange(Character, character_proportion) %>%
ggplot(aes(x=first_word_f, y=character_proportion, fill=Character,
text3=character_count, text2=first_word, text1=Character)) +
scale_fill_manual(values=brewer.pal(4, "Set2")) + ggtitle("Information details of each characters top/first words that are used in their scripts") +
geom_bar(stat="identity") + coord_flip()
ggplotly(p, tooltip = c("text1", "text2", "text3"))
#p
```
```{r fig.width=12, fig.height=7, fig.align='center'}
#visually display the script number of lines of each charcter in the seasons
top<-data.frame(scripts %>% filter(!grepl("^\\[|^\\(", Character)) %>% group_by(Season, Character) %>% summarise(count=n()) %>% arrange(-count) %>% top_n(20))
top$Char<-ifelse(top$Character %in% c('JERRY','GEORGE','ELAINE','KRAMER','NEWMAN','PUDDY','PETERMAN','ESTELLE','SUSAN','HELEN','MORTY','FRANK'),top$Character,'OTHER')
top %>%
ggplot(aes(x=factor(Season),y=count,fill=Char)) +
geom_histogram(stat='identity',color='white',size=.2) + theme_fivethirtyeight() +
scale_fill_manual(name='',values=colorRampPalette(brewer.pal(11,"Paired"))(13)) +
guides(fill=guide_legend(ncol=8)) +
labs(title='Number of lines per character and season')
```
###Comparison word-cloud
```{r compcloud, echo=F, warning=F, message=F, fig.height = 7}
#manipulate data into a format comaprisoncloud can use
comp_clould_data <- stage_direction_DF %>%
filter(tolower(Character) %in% tolower(main_characters)) %>%
group_by(Character) %>%
summarise(char_directions=paste(first_word, collapse = " "))
all <- comp_clould_data$char_directions
corpus <- Corpus(VectorSource(all))
tdm <- TermDocumentMatrix(corpus)
tdm <- as.matrix(tdm)
colnames(tdm) <- comp_clould_data$Character
comparison.cloud(tdm, random.order=FALSE,
colors=brewer.pal(4, "Set1"),
title.size=1.5,
rot.per=0)
```