forked from PaddlePaddle/PaddleDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaction_infer.py
321 lines (282 loc) · 11.5 KB
/
action_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import yaml
import glob
import cv2
import numpy as np
import math
import paddle
import sys
from collections import Sequence
# add deploy path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)
from paddle.inference import Config, create_predictor
from utils import argsparser, Timer, get_current_memory_mb
from benchmark_utils import PaddleInferBenchmark
from infer import Detector, print_arguments
class ActionRecognizer(Detector):
"""
Args:
model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
batch_size (int): size of pre batch in inference
trt_min_shape (int): min shape for dynamic shape in trt
trt_max_shape (int): max shape for dynamic shape in trt
trt_opt_shape (int): opt shape for dynamic shape in trt
trt_calib_mode (bool): If the model is produced by TRT offline quantitative
calibration, trt_calib_mode need to set True
cpu_threads (int): cpu threads
enable_mkldnn (bool): whether to open MKLDNN
threshold (float): The threshold of score for visualization
window_size(int): Temporal size of skeleton feature.
random_pad (bool): Whether do random padding when frame length < window_size.
"""
def __init__(self,
model_dir,
device='CPU',
run_mode='paddle',
batch_size=1,
trt_min_shape=1,
trt_max_shape=1280,
trt_opt_shape=640,
trt_calib_mode=False,
cpu_threads=1,
enable_mkldnn=False,
output_dir='output',
threshold=0.5,
window_size=100,
random_pad=False):
assert batch_size == 1, "ActionRecognizer only support batch_size=1 now."
super(ActionRecognizer, self).__init__(
model_dir=model_dir,
device=device,
run_mode=run_mode,
batch_size=batch_size,
trt_min_shape=trt_min_shape,
trt_max_shape=trt_max_shape,
trt_opt_shape=trt_opt_shape,
trt_calib_mode=trt_calib_mode,
cpu_threads=cpu_threads,
enable_mkldnn=enable_mkldnn,
output_dir=output_dir,
threshold=threshold,
delete_shuffle_pass=True)
def predict(self, repeats=1):
'''
Args:
repeats (int): repeat number for prediction
Returns:
results (dict):
'''
# model prediction
output_names = self.predictor.get_output_names()
for i in range(repeats):
self.predictor.run()
output_tensor = self.predictor.get_output_handle(output_names[0])
np_output = output_tensor.copy_to_cpu()
result = dict(output=np_output)
return result
def predict_skeleton(self, skeleton_list, run_benchmark=False, repeats=1):
results = []
for i, skeleton in enumerate(skeleton_list):
if run_benchmark:
# preprocess
inputs = self.preprocess(skeleton) # warmup
self.det_times.preprocess_time_s.start()
inputs = self.preprocess(skeleton)
self.det_times.preprocess_time_s.end()
# model prediction
result = self.predict(repeats=repeats) # warmup
self.det_times.inference_time_s.start()
result = self.predict(repeats=repeats)
self.det_times.inference_time_s.end(repeats=repeats)
# postprocess
result_warmup = self.postprocess(inputs, result) # warmup
self.det_times.postprocess_time_s.start()
result = self.postprocess(inputs, result)
self.det_times.postprocess_time_s.end()
self.det_times.img_num += len(skeleton)
cm, gm, gu = get_current_memory_mb()
self.cpu_mem += cm
self.gpu_mem += gm
self.gpu_util += gu
else:
# preprocess
self.det_times.preprocess_time_s.start()
inputs = self.preprocess(skeleton)
self.det_times.preprocess_time_s.end()
# model prediction
self.det_times.inference_time_s.start()
result = self.predict()
self.det_times.inference_time_s.end()
# postprocess
self.det_times.postprocess_time_s.start()
result = self.postprocess(inputs, result)
self.det_times.postprocess_time_s.end()
self.det_times.img_num += len(skeleton)
results.append(result)
return results
def predict_skeleton_with_mot(self, skeleton_with_mot, run_benchmark=False):
"""
skeleton_with_mot (dict): includes individual skeleton sequences, which shape is [C, T, K, 1]
and its corresponding track id.
"""
skeleton_list = skeleton_with_mot["skeleton"]
mot_id = skeleton_with_mot["mot_id"]
act_res = self.predict_skeleton(skeleton_list, run_benchmark, repeats=1)
results = list(zip(mot_id, act_res))
return results
def preprocess(self, data):
preprocess_ops = []
for op_info in self.pred_config.preprocess_infos:
new_op_info = op_info.copy()
op_type = new_op_info.pop('type')
preprocess_ops.append(eval(op_type)(**new_op_info))
input_lst = []
data = action_preprocess(data, preprocess_ops)
input_lst.append(data)
input_names = self.predictor.get_input_names()
inputs = {}
inputs['data_batch_0'] = np.stack(input_lst, axis=0).astype('float32')
for i in range(len(input_names)):
input_tensor = self.predictor.get_input_handle(input_names[i])
input_tensor.copy_from_cpu(inputs[input_names[i]])
return inputs
def postprocess(self, inputs, result):
# postprocess output of predictor
output_logit = result['output'][0]
classes = np.argpartition(output_logit, -1)[-1:]
classes = classes[np.argsort(-output_logit[classes])]
scores = output_logit[classes]
result = {'class': classes, 'score': scores}
return result
def action_preprocess(input, preprocess_ops):
"""
input (str | numpy.array): if input is str, it should be a legal file path with numpy array saved.
Otherwise it should be numpy.array as direct input.
return (numpy.array)
"""
if isinstance(input, str):
assert os.path.isfile(input) is not None, "{0} not exists".format(input)
data = np.load(input)
else:
data = input
for operator in preprocess_ops:
data = operator(data)
return data
class AutoPadding(object):
"""
Sample or Padding frame skeleton feature.
Args:
window_size (int): Temporal size of skeleton feature.
random_pad (bool): Whether do random padding when frame length < window size. Default: False.
"""
def __init__(self, window_size=100, random_pad=False):
self.window_size = window_size
self.random_pad = random_pad
def get_frame_num(self, data):
C, T, V, M = data.shape
for i in range(T - 1, -1, -1):
tmp = np.sum(data[:, i, :, :])
if tmp > 0:
T = i + 1
break
return T
def __call__(self, results):
data = results
C, T, V, M = data.shape
T = self.get_frame_num(data)
if T == self.window_size:
data_pad = data[:, :self.window_size, :, :]
elif T < self.window_size:
begin = random.randint(
0, self.window_size - T) if self.random_pad else 0
data_pad = np.zeros((C, self.window_size, V, M))
data_pad[:, begin:begin + T, :, :] = data[:, :T, :, :]
else:
if self.random_pad:
index = np.random.choice(
T, self.window_size, replace=False).astype('int64')
else:
index = np.linspace(0, T, self.window_size).astype("int64")
data_pad = data[:, index, :, :]
return data_pad
def get_test_skeletons(input_file):
assert input_file is not None, "--action_file can not be None"
input_data = np.load(input_file)
if input_data.ndim == 4:
return [input_data]
elif input_data.ndim == 5:
output = list(
map(lambda x: np.squeeze(x, 0),
np.split(input_data, input_data.shape[0], 0)))
return output
else:
raise ValueError(
"Now only support input with shape: (N, C, T, K, M) or (C, T, K, M)")
def main():
detector = ActionRecognizer(
FLAGS.model_dir,
device=FLAGS.device,
run_mode=FLAGS.run_mode,
batch_size=FLAGS.batch_size,
trt_min_shape=FLAGS.trt_min_shape,
trt_max_shape=FLAGS.trt_max_shape,
trt_opt_shape=FLAGS.trt_opt_shape,
trt_calib_mode=FLAGS.trt_calib_mode,
cpu_threads=FLAGS.cpu_threads,
enable_mkldnn=FLAGS.enable_mkldnn,
threshold=FLAGS.threshold,
output_dir=FLAGS.output_dir,
window_size=FLAGS.window_size,
random_pad=FLAGS.random_pad)
# predict from numpy array
input_list = get_test_skeletons(FLAGS.action_file)
detector.predict_skeleton(input_list, FLAGS.run_benchmark, repeats=10)
if not FLAGS.run_benchmark:
detector.det_times.info(average=True)
else:
mems = {
'cpu_rss_mb': detector.cpu_mem / len(input_list),
'gpu_rss_mb': detector.gpu_mem / len(input_list),
'gpu_util': detector.gpu_util * 100 / len(input_list)
}
perf_info = detector.det_times.report(average=True)
model_dir = FLAGS.model_dir
mode = FLAGS.run_mode
model_info = {
'model_name': model_dir.strip('/').split('/')[-1],
'precision': mode.split('_')[-1]
}
data_info = {
'batch_size': FLAGS.batch_size,
'shape': "dynamic_shape",
'data_num': perf_info['img_num']
}
det_log = PaddleInferBenchmark(detector.config, model_info, data_info,
perf_info, mems)
det_log('Action')
if __name__ == '__main__':
paddle.enable_static()
parser = argsparser()
FLAGS = parser.parse_args()
print_arguments(FLAGS)
FLAGS.device = FLAGS.device.upper()
assert FLAGS.device in ['CPU', 'GPU', 'XPU'
], "device should be CPU, GPU or XPU"
assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"
main()