forked from PaddlePaddle/PaddleDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipeline.py
759 lines (668 loc) · 29.8 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import yaml
import glob
from collections import defaultdict
import cv2
import numpy as np
import math
import paddle
import sys
import copy
from collections import Sequence
from reid import ReID
from datacollector import DataCollector, Result
from mtmct import mtmct_process
# add deploy path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)
from python.infer import Detector, DetectorPicoDet
from python.attr_infer import AttrDetector
from python.keypoint_infer import KeyPointDetector
from python.keypoint_postprocess import translate_to_ori_images
from python.action_infer import ActionRecognizer
from python.action_utils import KeyPointBuff, ActionVisualHelper
from pipe_utils import argsparser, print_arguments, merge_cfg, PipeTimer
from pipe_utils import get_test_images, crop_image_with_det, crop_image_with_mot, parse_mot_res, parse_mot_keypoint
from python.preprocess import decode_image
from python.visualize import visualize_box_mask, visualize_attr, visualize_pose, visualize_action
from pptracking.python.mot_sde_infer import SDE_Detector
from pptracking.python.mot.visualize import plot_tracking_dict
from pptracking.python.mot.utils import flow_statistic
class Pipeline(object):
"""
Pipeline
Args:
cfg (dict): config of models in pipeline
image_file (string|None): the path of image file, default as None
image_dir (string|None): the path of image directory, if not None,
then all the images in directory will be predicted, default as None
video_file (string|None): the path of video file, default as None
camera_id (int): the device id of camera to predict, default as -1
enable_attr (bool): whether use attribute recognition, default as false
enable_action (bool): whether use action recognition, default as false
device (string): the device to predict, options are: CPU/GPU/XPU,
default as CPU
run_mode (string): the mode of prediction, options are:
paddle/trt_fp32/trt_fp16, default as paddle
trt_min_shape (int): min shape for dynamic shape in trt, default as 1
trt_max_shape (int): max shape for dynamic shape in trt, default as 1280
trt_opt_shape (int): opt shape for dynamic shape in trt, default as 640
trt_calib_mode (bool): If the model is produced by TRT offline quantitative
calibration, trt_calib_mode need to set True. default as False
cpu_threads (int): cpu threads, default as 1
enable_mkldnn (bool): whether to open MKLDNN, default as False
output_dir (string): The path of output, default as 'output'
draw_center_traj (bool): Whether drawing the trajectory of center, default as False
secs_interval (int): The seconds interval to count after tracking, default as 10
do_entrance_counting(bool): Whether counting the numbers of identifiers entering
or getting out from the entrance, default as False,only support single class
counting in MOT.
"""
def __init__(self,
cfg,
image_file=None,
image_dir=None,
video_file=None,
video_dir=None,
camera_id=-1,
enable_attr=False,
enable_action=True,
device='CPU',
run_mode='paddle',
trt_min_shape=1,
trt_max_shape=1280,
trt_opt_shape=640,
trt_calib_mode=False,
cpu_threads=1,
enable_mkldnn=False,
output_dir='output',
draw_center_traj=False,
secs_interval=10,
do_entrance_counting=False):
self.multi_camera = False
self.is_video = False
self.output_dir = output_dir
self.vis_result = cfg['visual']
self.input = self._parse_input(image_file, image_dir, video_file,
video_dir, camera_id)
if self.multi_camera:
self.predictor = []
for name in self.input:
predictor_item = PipePredictor(
cfg,
is_video=True,
multi_camera=True,
enable_attr=enable_attr,
enable_action=enable_action,
device=device,
run_mode=run_mode,
trt_min_shape=trt_min_shape,
trt_max_shape=trt_max_shape,
trt_opt_shape=trt_opt_shape,
cpu_threads=cpu_threads,
enable_mkldnn=enable_mkldnn,
output_dir=output_dir)
predictor_item.set_file_name(name)
self.predictor.append(predictor_item)
else:
self.predictor = PipePredictor(
cfg,
self.is_video,
enable_attr=enable_attr,
enable_action=enable_action,
device=device,
run_mode=run_mode,
trt_min_shape=trt_min_shape,
trt_max_shape=trt_max_shape,
trt_opt_shape=trt_opt_shape,
trt_calib_mode=trt_calib_mode,
cpu_threads=cpu_threads,
enable_mkldnn=enable_mkldnn,
output_dir=output_dir,
draw_center_traj=draw_center_traj,
secs_interval=secs_interval,
do_entrance_counting=do_entrance_counting)
if self.is_video:
self.predictor.set_file_name(video_file)
self.output_dir = output_dir
self.draw_center_traj = draw_center_traj
self.secs_interval = secs_interval
self.do_entrance_counting = do_entrance_counting
def _parse_input(self, image_file, image_dir, video_file, video_dir,
camera_id):
# parse input as is_video and multi_camera
if image_file is not None or image_dir is not None:
input = get_test_images(image_dir, image_file)
self.is_video = False
self.multi_camera = False
elif video_file is not None:
assert os.path.exists(video_file), "video_file not exists."
self.multi_camera = False
input = video_file
self.is_video = True
elif video_dir is not None:
videof = [os.path.join(video_dir, x) for x in os.listdir(video_dir)]
if len(videof) > 1:
self.multi_camera = True
videof.sort()
input = videof
else:
input = videof[0]
self.is_video = True
elif camera_id != -1:
self.multi_camera = False
input = camera_id
self.is_video = True
else:
raise ValueError(
"Illegal Input, please set one of ['video_file','camera_id','image_file', 'image_dir']"
)
return input
def run(self):
if self.multi_camera:
multi_res = []
for predictor, input in zip(self.predictor, self.input):
predictor.run(input)
collector_data = predictor.get_result()
multi_res.append(collector_data)
mtmct_process(
multi_res,
self.input,
mtmct_vis=self.vis_result,
output_dir=self.output_dir)
else:
self.predictor.run(self.input)
class PipePredictor(object):
"""
Predictor in single camera
The pipeline for image input:
1. Detection
2. Detection -> Attribute
The pipeline for video input:
1. Tracking
2. Tracking -> Attribute
3. Tracking -> KeyPoint -> Action Recognition
Args:
cfg (dict): config of models in pipeline
is_video (bool): whether the input is video, default as False
multi_camera (bool): whether to use multi camera in pipeline,
default as False
camera_id (int): the device id of camera to predict, default as -1
enable_attr (bool): whether use attribute recognition, default as false
enable_action (bool): whether use action recognition, default as false
device (string): the device to predict, options are: CPU/GPU/XPU,
default as CPU
run_mode (string): the mode of prediction, options are:
paddle/trt_fp32/trt_fp16, default as paddle
trt_min_shape (int): min shape for dynamic shape in trt, default as 1
trt_max_shape (int): max shape for dynamic shape in trt, default as 1280
trt_opt_shape (int): opt shape for dynamic shape in trt, default as 640
trt_calib_mode (bool): If the model is produced by TRT offline quantitative
calibration, trt_calib_mode need to set True. default as False
cpu_threads (int): cpu threads, default as 1
enable_mkldnn (bool): whether to open MKLDNN, default as False
output_dir (string): The path of output, default as 'output'
draw_center_traj (bool): Whether drawing the trajectory of center, default as False
secs_interval (int): The seconds interval to count after tracking, default as 10
do_entrance_counting(bool): Whether counting the numbers of identifiers entering
or getting out from the entrance, default as False,only support single class
counting in MOT.
"""
def __init__(self,
cfg,
is_video=True,
multi_camera=False,
enable_attr=False,
enable_action=False,
device='CPU',
run_mode='paddle',
trt_min_shape=1,
trt_max_shape=1280,
trt_opt_shape=640,
trt_calib_mode=False,
cpu_threads=1,
enable_mkldnn=False,
output_dir='output',
draw_center_traj=False,
secs_interval=10,
do_entrance_counting=False):
if enable_attr and not cfg.get('ATTR', False):
ValueError(
'enable_attr is set to True, please set ATTR in config file')
if enable_action and (not cfg.get('ACTION', False) or
not cfg.get('KPT', False)):
ValueError(
'enable_action is set to True, please set KPT and ACTION in config file'
)
self.with_attr = cfg.get('ATTR', False) and enable_attr
self.with_action = cfg.get('ACTION', False) and enable_action
self.with_mtmct = cfg.get('REID', False) and multi_camera
if self.with_attr:
print('Attribute Recognition enabled')
if self.with_action:
print('Action Recognition enabled')
if multi_camera:
if not self.with_mtmct:
print(
'Warning!!! MTMCT enabled, but cannot find REID config in [infer_cfg.yml], please check!'
)
else:
print("MTMCT enabled")
self.is_video = is_video
self.multi_camera = multi_camera
self.cfg = cfg
self.output_dir = output_dir
self.draw_center_traj = draw_center_traj
self.secs_interval = secs_interval
self.do_entrance_counting = do_entrance_counting
self.warmup_frame = self.cfg['warmup_frame']
self.pipeline_res = Result()
self.pipe_timer = PipeTimer()
self.file_name = None
self.collector = DataCollector()
if not is_video:
det_cfg = self.cfg['DET']
model_dir = det_cfg['model_dir']
batch_size = det_cfg['batch_size']
self.det_predictor = Detector(
model_dir, device, run_mode, batch_size, trt_min_shape,
trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
enable_mkldnn)
if self.with_attr:
attr_cfg = self.cfg['ATTR']
model_dir = attr_cfg['model_dir']
batch_size = attr_cfg['batch_size']
self.attr_predictor = AttrDetector(
model_dir, device, run_mode, batch_size, trt_min_shape,
trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
enable_mkldnn)
else:
mot_cfg = self.cfg['MOT']
model_dir = mot_cfg['model_dir']
tracker_config = mot_cfg['tracker_config']
batch_size = mot_cfg['batch_size']
self.mot_predictor = SDE_Detector(
model_dir,
tracker_config,
device,
run_mode,
batch_size,
trt_min_shape,
trt_max_shape,
trt_opt_shape,
trt_calib_mode,
cpu_threads,
enable_mkldnn,
draw_center_traj=draw_center_traj,
secs_interval=secs_interval,
do_entrance_counting=do_entrance_counting)
if self.with_attr:
attr_cfg = self.cfg['ATTR']
model_dir = attr_cfg['model_dir']
batch_size = attr_cfg['batch_size']
self.attr_predictor = AttrDetector(
model_dir, device, run_mode, batch_size, trt_min_shape,
trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
enable_mkldnn)
if self.with_action:
kpt_cfg = self.cfg['KPT']
kpt_model_dir = kpt_cfg['model_dir']
kpt_batch_size = kpt_cfg['batch_size']
action_cfg = self.cfg['ACTION']
action_model_dir = action_cfg['model_dir']
action_batch_size = action_cfg['batch_size']
action_frames = action_cfg['max_frames']
display_frames = action_cfg['display_frames']
self.coord_size = action_cfg['coord_size']
self.kpt_predictor = KeyPointDetector(
kpt_model_dir,
device,
run_mode,
kpt_batch_size,
trt_min_shape,
trt_max_shape,
trt_opt_shape,
trt_calib_mode,
cpu_threads,
enable_mkldnn,
use_dark=False)
self.kpt_buff = KeyPointBuff(action_frames)
self.action_predictor = ActionRecognizer(
action_model_dir,
device,
run_mode,
action_batch_size,
trt_min_shape,
trt_max_shape,
trt_opt_shape,
trt_calib_mode,
cpu_threads,
enable_mkldnn,
window_size=action_frames)
self.action_visual_helper = ActionVisualHelper(display_frames)
if self.with_mtmct:
reid_cfg = self.cfg['REID']
model_dir = reid_cfg['model_dir']
batch_size = reid_cfg['batch_size']
self.reid_predictor = ReID(model_dir, device, run_mode, batch_size,
trt_min_shape, trt_max_shape,
trt_opt_shape, trt_calib_mode,
cpu_threads, enable_mkldnn)
def set_file_name(self, path):
if path is not None:
self.file_name = os.path.split(path)[-1]
else:
# use camera id
self.file_name = None
def get_result(self):
return self.collector.get_res()
def run(self, input):
if self.is_video:
self.predict_video(input)
else:
self.predict_image(input)
self.pipe_timer.info()
def predict_image(self, input):
# det
# det -> attr
batch_loop_cnt = math.ceil(
float(len(input)) / self.det_predictor.batch_size)
for i in range(batch_loop_cnt):
start_index = i * self.det_predictor.batch_size
end_index = min((i + 1) * self.det_predictor.batch_size, len(input))
batch_file = input[start_index:end_index]
batch_input = [decode_image(f, {})[0] for f in batch_file]
if i > self.warmup_frame:
self.pipe_timer.total_time.start()
self.pipe_timer.module_time['det'].start()
# det output format: class, score, xmin, ymin, xmax, ymax
det_res = self.det_predictor.predict_image(
batch_input, visual=False)
det_res = self.det_predictor.filter_box(det_res,
self.cfg['crop_thresh'])
if i > self.warmup_frame:
self.pipe_timer.module_time['det'].end()
self.pipeline_res.update(det_res, 'det')
if self.with_attr:
crop_inputs = crop_image_with_det(batch_input, det_res)
attr_res_list = []
if i > self.warmup_frame:
self.pipe_timer.module_time['attr'].start()
for crop_input in crop_inputs:
attr_res = self.attr_predictor.predict_image(
crop_input, visual=False)
attr_res_list.extend(attr_res['output'])
if i > self.warmup_frame:
self.pipe_timer.module_time['attr'].end()
attr_res = {'output': attr_res_list}
self.pipeline_res.update(attr_res, 'attr')
self.pipe_timer.img_num += len(batch_input)
if i > self.warmup_frame:
self.pipe_timer.total_time.end()
if self.cfg['visual']:
self.visualize_image(batch_file, batch_input, self.pipeline_res)
def predict_video(self, video_file):
# mot
# mot -> attr
# mot -> pose -> action
capture = cv2.VideoCapture(video_file)
video_out_name = 'output.mp4' if self.file_name is None else self.file_name
# Get Video info : resolution, fps, frame count
width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(capture.get(cv2.CAP_PROP_FPS))
frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
print("video fps: %d, frame_count: %d" % (fps, frame_count))
if not os.path.exists(self.output_dir):
os.makedirs(self.output_dir)
out_path = os.path.join(self.output_dir, video_out_name)
fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
frame_id = 0
entrance, records, center_traj = None, None, None
if self.draw_center_traj:
center_traj = [{}]
id_set = set()
interval_id_set = set()
in_id_list = list()
out_id_list = list()
prev_center = dict()
records = list()
entrance = [0, height / 2., width, height / 2.]
video_fps = fps
while (1):
if frame_id % 10 == 0:
print('frame id: ', frame_id)
ret, frame = capture.read()
if not ret:
break
if frame_id > self.warmup_frame:
self.pipe_timer.total_time.start()
self.pipe_timer.module_time['mot'].start()
res = self.mot_predictor.predict_image(
[copy.deepcopy(frame)], visual=False)
if frame_id > self.warmup_frame:
self.pipe_timer.module_time['mot'].end()
# mot output format: id, class, score, xmin, ymin, xmax, ymax
mot_res = parse_mot_res(res)
# flow_statistic only support single class MOT
boxes, scores, ids = res[0] # batch size = 1 in MOT
mot_result = (frame_id + 1, boxes[0], scores[0],
ids[0]) # single class
statistic = flow_statistic(
mot_result, self.secs_interval, self.do_entrance_counting,
video_fps, entrance, id_set, interval_id_set, in_id_list,
out_id_list, prev_center, records)
records = statistic['records']
# nothing detected
if len(mot_res['boxes']) == 0:
frame_id += 1
if frame_id > self.warmup_frame:
self.pipe_timer.img_num += 1
self.pipe_timer.total_time.end()
if self.cfg['visual']:
_, _, fps = self.pipe_timer.get_total_time()
im = self.visualize_video(frame, mot_res, frame_id, fps,
entrance, records,
center_traj) # visualize
writer.write(im)
if self.file_name is None: # use camera_id
cv2.imshow('PPHuman', im)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
continue
self.pipeline_res.update(mot_res, 'mot')
if self.with_attr or self.with_action:
crop_input, new_bboxes, ori_bboxes = crop_image_with_mot(
frame, mot_res)
if self.with_attr:
if frame_id > self.warmup_frame:
self.pipe_timer.module_time['attr'].start()
attr_res = self.attr_predictor.predict_image(
crop_input, visual=False)
if frame_id > self.warmup_frame:
self.pipe_timer.module_time['attr'].end()
self.pipeline_res.update(attr_res, 'attr')
if self.with_action:
if frame_id > self.warmup_frame:
self.pipe_timer.module_time['kpt'].start()
kpt_pred = self.kpt_predictor.predict_image(
crop_input, visual=False)
keypoint_vector, score_vector = translate_to_ori_images(
kpt_pred, np.array(new_bboxes))
kpt_res = {}
kpt_res['keypoint'] = [
keypoint_vector.tolist(), score_vector.tolist()
] if len(keypoint_vector) > 0 else [[], []]
kpt_res['bbox'] = ori_bboxes
if frame_id > self.warmup_frame:
self.pipe_timer.module_time['kpt'].end()
self.pipeline_res.update(kpt_res, 'kpt')
self.kpt_buff.update(kpt_res, mot_res) # collect kpt output
state = self.kpt_buff.get_state(
) # whether frame num is enough or lost tracker
action_res = {}
if state:
if frame_id > self.warmup_frame:
self.pipe_timer.module_time['action'].start()
collected_keypoint = self.kpt_buff.get_collected_keypoint(
) # reoragnize kpt output with ID
action_input = parse_mot_keypoint(collected_keypoint,
self.coord_size)
action_res = self.action_predictor.predict_skeleton_with_mot(
action_input)
if frame_id > self.warmup_frame:
self.pipe_timer.module_time['action'].end()
self.pipeline_res.update(action_res, 'action')
if self.cfg['visual']:
self.action_visual_helper.update(action_res)
if self.with_mtmct and frame_id % 10 == 0:
crop_input, img_qualities, rects = self.reid_predictor.crop_image_with_mot(
frame, mot_res)
if frame_id > self.warmup_frame:
self.pipe_timer.module_time['reid'].start()
reid_res = self.reid_predictor.predict_batch(crop_input)
if frame_id > self.warmup_frame:
self.pipe_timer.module_time['reid'].end()
reid_res_dict = {
'features': reid_res,
"qualities": img_qualities,
"rects": rects
}
self.pipeline_res.update(reid_res_dict, 'reid')
else:
self.pipeline_res.clear('reid')
self.collector.append(frame_id, self.pipeline_res)
if frame_id > self.warmup_frame:
self.pipe_timer.img_num += 1
self.pipe_timer.total_time.end()
frame_id += 1
if self.cfg['visual']:
_, _, fps = self.pipe_timer.get_total_time()
im = self.visualize_video(frame, self.pipeline_res, frame_id,
fps, entrance, records,
center_traj) # visualize
writer.write(im)
if self.file_name is None: # use camera_id
cv2.imshow('PPHuman', im)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
writer.release()
print('save result to {}'.format(out_path))
def visualize_video(self,
image,
result,
frame_id,
fps,
entrance=None,
records=None,
center_traj=None):
mot_res = copy.deepcopy(result.get('mot'))
if mot_res is not None:
ids = mot_res['boxes'][:, 0]
scores = mot_res['boxes'][:, 2]
boxes = mot_res['boxes'][:, 3:]
boxes[:, 2] = boxes[:, 2] - boxes[:, 0]
boxes[:, 3] = boxes[:, 3] - boxes[:, 1]
else:
boxes = np.zeros([0, 4])
ids = np.zeros([0])
scores = np.zeros([0])
# single class, still need to be defaultdict type for ploting
num_classes = 1
online_tlwhs = defaultdict(list)
online_scores = defaultdict(list)
online_ids = defaultdict(list)
online_tlwhs[0] = boxes
online_scores[0] = scores
online_ids[0] = ids
image = plot_tracking_dict(
image,
num_classes,
online_tlwhs,
online_ids,
online_scores,
frame_id=frame_id,
fps=fps,
do_entrance_counting=self.do_entrance_counting,
entrance=entrance,
records=records,
center_traj=center_traj)
attr_res = result.get('attr')
if attr_res is not None:
boxes = mot_res['boxes'][:, 1:]
attr_res = attr_res['output']
image = visualize_attr(image, attr_res, boxes)
image = np.array(image)
kpt_res = result.get('kpt')
if kpt_res is not None:
image = visualize_pose(
image,
kpt_res,
visual_thresh=self.cfg['kpt_thresh'],
returnimg=True)
action_res = result.get('action')
if action_res is not None:
image = visualize_action(image, mot_res['boxes'],
self.action_visual_helper, "Falling")
return image
def visualize_image(self, im_files, images, result):
start_idx, boxes_num_i = 0, 0
det_res = result.get('det')
attr_res = result.get('attr')
for i, (im_file, im) in enumerate(zip(im_files, images)):
if det_res is not None:
det_res_i = {}
boxes_num_i = det_res['boxes_num'][i]
det_res_i['boxes'] = det_res['boxes'][start_idx:start_idx +
boxes_num_i, :]
im = visualize_box_mask(
im,
det_res_i,
labels=['person'],
threshold=self.cfg['crop_thresh'])
im = np.ascontiguousarray(np.copy(im))
im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
if attr_res is not None:
attr_res_i = attr_res['output'][start_idx:start_idx +
boxes_num_i]
im = visualize_attr(im, attr_res_i, det_res_i['boxes'])
img_name = os.path.split(im_file)[-1]
if not os.path.exists(self.output_dir):
os.makedirs(self.output_dir)
out_path = os.path.join(self.output_dir, img_name)
cv2.imwrite(out_path, im)
print("save result to: " + out_path)
start_idx += boxes_num_i
def main():
cfg = merge_cfg(FLAGS)
print_arguments(cfg)
pipeline = Pipeline(
cfg, FLAGS.image_file, FLAGS.image_dir, FLAGS.video_file,
FLAGS.video_dir, FLAGS.camera_id, FLAGS.enable_attr,
FLAGS.enable_action, FLAGS.device, FLAGS.run_mode, FLAGS.trt_min_shape,
FLAGS.trt_max_shape, FLAGS.trt_opt_shape, FLAGS.trt_calib_mode,
FLAGS.cpu_threads, FLAGS.enable_mkldnn, FLAGS.output_dir,
FLAGS.draw_center_traj, FLAGS.secs_interval, FLAGS.do_entrance_counting)
pipeline.run()
if __name__ == '__main__':
paddle.enable_static()
parser = argsparser()
FLAGS = parser.parse_args()
FLAGS.device = FLAGS.device.upper()
assert FLAGS.device in ['CPU', 'GPU', 'XPU'
], "device should be CPU, GPU or XPU"
main()