-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathapp.py
43 lines (34 loc) · 1.51 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from flask import Flask, render_template, request
import pickle
import numpy as np
# Load the Model
filename = 'model.pkl'
classifier = pickle.load(open(filename, 'rb'))
app = Flask(__name__)
@app.route('/')
def home():
return render_template('index.html')
@app.route('/predict', methods=['POST'])
def predict():
if request.method == 'POST':
age = int(request.form['Age'])
obesity = int(request.form['Obesity'])
gender = int(request.form['Gender'])
polyuria = int(request.form['Polyuria'])
polydipsia = int(request.form['Polydipsia'])
s_w_l = int(request.form['sudden_weight_loss'])
weakness = int(request.form['weakness'])
polyphagia = int(request.form['Polyphagia'])
g_t = int(request.form['Genital_thrush'])
v_b = int(request.form['visual_blurring'])
itching = int(request.form['Itching'])
irritability = int(request.form['Irritability'])
d_h = int(request.form['delayed_healing'])
p_p = int(request.form['partial_paresis'])
m_s = int(request.form['muscle_stiffness'])
alopecia = int(request.form['Alopecia'])
input_data = np.array([[age, gender, polyuria, polydipsia, s_w_l, weakness, polyphagia, g_t, v_b, itching, irritability, d_h, p_p, m_s, alopecia, obesity]])
my_prediction = classifier.predict(input_data)
return render_template('result.html', prediction=my_prediction)
if __name__ == '__main__':
app.run(debug=True)