forked from afranks86/tissue-ptr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess_mrna.R
141 lines (108 loc) · 4.89 KB
/
preprocess_mrna.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
rm(list=ls())
library(magrittr)
rawDataDir <- "~/Dropbox/tissue-ptr data/"
######################################
## Illumina data
######################################
illumina <- read.table(paste0(rawDataDir, "Illumina/Illumina_FPKM_allsamples.txt"), header=TRUE, sep="\t", row.names=1)
illumina[illumina==0] <- NA
illumina <- log10(illumina)
cnms <- colnames(illumina)
tissues <- strsplit(cnms, split="\\.|_", fixed=FALSE) %>%
sapply(FUN = function(x) x[2])
## normalize mrna's against mrna[,1]
for(i in 2:ncol(illumina)){
illumina[,i] <- illumina[,i] + median( illumina[,1] - illumina[,i], na.rm=TRUE)
}
illumina_orig <- illumina
## Aggregate over samples
illumina <- t(aggregate(t(illumina_orig), by=list(tissues), function(x) mean(x, na.rm=TRUE)))
colnames(illumina) <- illumina[1, ]
illumina <- illumina[-1, ]
colnames(illumina)[colnames(illumina)=="adrenal"] <- "adrenal.gland"
colnames(illumina)[colnames(illumina)=="thyroid"] <- "thyroid.gland"
colnames(illumina)[colnames(illumina)=="salivarygland"] <- "salivary.gland"
colnames(illumina)[colnames(illumina)=="bonemarrow"] <- "bone.marrow"
colnames(illumina)[colnames(illumina)=="smallintestine"] <- "small.intestine"
colnames(illumina)[colnames(illumina)=="urinarybladder"] <- "urinary.bladder"
colnames(illumina)[colnames(illumina)=="gallbladder"] <- "gall.bladder"
## split data into two sets to measure internal reliability
split1 <- unlist(sapply(unique(tissues), function(tissue) {
len <- sum(tissues==tissue)
(1:len) <= len/2
p
}))
split2 <- !split1
illumina_split1 <- illumina_orig[, split1]
illumina_split2 <- illumina_orig[, split2]
illumina_split1 <- t(aggregate(t(illumina_split1),
by=list(tissues[split1]),
function(x) mean(x, na.rm=TRUE)))
illumina_split2 <- t(aggregate(t(illumina_split2),
by=list(tissues[split2]),
function(x) mean(x, na.rm=TRUE)))
illumina_split1 <- illumina_split1[-1, ]
illumina_split2 <- illumina_split2[-1, ]
colnames(illumina_split1) <- colnames(illumina)
colnames(illumina_split2) <- colnames(illumina)
illumina <- illumina[, order(colnames(illumina))]
illumina_split1 <- illumina_split1[, order(colnames(illumina_split1))]
illumina_split2 <- illumina_split2[, order(colnames(illumina_split2))]
write.csv(illumina, "data/mrna_illumina.csv", quote=FALSE)
write.csv(illumina_split1, "data/mrna_illumina_split1.csv", quote=FALSE)
write.csv(illumina_split2, "data/mrna_illumina_split2.csv", quote=FALSE)
######################################
## ProteinAtlas data
######################################
pa <- read.table(paste0(rawDataDir, "ProteinAtlas/transcript_rna_tissue.tsv"),
sep="\t", header=TRUE)
pa_agg <- aggregate(pa[, -(1:2)], by=list(pa[, 1]), function(x) sum(x, na.rm=T))
pa_agg[pa_agg==0] <- NA
pa_agg[, -(1:2)] <- log10(pa_agg[, -(1:2)])
rnms <- pa_agg[, 1]
pa_agg <- pa_agg[, -1]
rownames(pa_agg) <- rnms
cnms <- colnames(pa_agg)
tissues <- strsplit(cnms, split="\\.|_", fixed=FALSE) %>%
sapply(FUN = function(x) x[1])
## normalize mrna's against mrna[,1]
for(i in 2:ncol(pa_agg)){
pa_agg[,i] <- pa_agg[,i] + median( pa_agg[, 1] - pa_agg[, i], na.rm=TRUE)
}
## Aggregate over samples
pa_orig <- pa_agg
pa_agg <- t(aggregate(t(pa_agg), by=list(tissues), function(x) mean(x, na.rm=TRUE)))
colnames(pa_agg) <- pa_agg[1, ]
pa_agg <- pa_agg[-1, ]
colnames(pa_agg)[colnames(pa_agg)=="adrenal"] <- "adrenal.gland"
colnames(pa_agg)[colnames(pa_agg)=="thyroid"] <- "thyroid.gland"
colnames(pa_agg)[colnames(pa_agg)=="salivary"] <- "salivary.gland"
colnames(pa_agg)[colnames(pa_agg)=="bone"] <- "bone.marrow"
colnames(pa_agg)[colnames(pa_agg)=="urinary"] <- "urinary.bladder"
colnames(pa_agg)[colnames(pa_agg)=="small"] <- "small.intestine"
colnames(pa_agg)[colnames(pa_agg)=="lymph"] <- "lymph.node"
colnames(pa_agg)[colnames(pa_agg)=="gallbladder"] <- "gall.bladder"
## split data into two sets to measure internal reliability
split1 <- unlist(sapply(unique(tissues), function(tissue) {
len <- sum(tissues==tissue)
(1:len) <= len/2
}))
split2 <- !split1
pa_split1 <- pa_orig[, split1]
pa_split2 <- pa_orig[, split2]
pa_split1 <- t(aggregate(t(pa_split1),
by=list(tissues[split1]),
function(x) mean(x, na.rm=TRUE)))
pa_split2 <- t(aggregate(t(pa_split2),
by=list(tissues[split2]),
function(x) mean(x, na.rm=TRUE)))
pa_split1 <- pa_split1[-1, ]
pa_split2 <- pa_split2[-1, ]
colnames(pa_split1) <- colnames(pa_agg)
colnames(pa_split2) <- colnames(pa_agg)
pa_agg <- pa_agg[, order(colnames(pa_agg))]
pa_split1 <- pa_split1[, order(colnames(pa_split1))]
pa_split2 <- pa_split2[, order(colnames(pa_split2))]
write.csv(pa_split1, "data/mrna_pa_split1.csv", quote=FALSE)
write.csv(pa_split2, "data/mrna_pa_split2.csv", quote=FALSE)
write.csv(pa_agg, "data/mrna_pa.csv", quote=FALSE)