-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathaac.v
229 lines (176 loc) · 5.84 KB
/
aac.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
Set Implicit Arguments.
Unset Strict Implicit.
Require Export lci.
Require Import List.
Require Import Permutation.
Module AAC_tools.
Inductive list_sub : (list E) -> E -> Prop :=
| sub_nil : forall x, list_sub nil x
| sub_cons : forall x a t, inc a x -> list_sub t x -> list_sub (a::t) x
.
Fixpoint list_iter (op:E2) (def:E) (l: list E) := match l with
| nil => def
| x::nil => x
| x::t => op x (list_iter op def t)
end.
Lemma lci_list_inc : forall op x, is_lci op x -> forall def, inc def x ->
forall l, list_sub l x -> inc (list_iter op def l) x.
Proof.
ir. nin H1.
simpl. am.
simpl. destruct t.
am.
ap H. am. ap IHlist_sub.
am. am.
Qed.
Lemma lci_list_nonempty_inc : forall op x, is_lci op x -> forall def l, list_sub l x -> l<>nil -> inc (list_iter op def l) x.
Proof.
ir. nin H0.
ap False_rect;au.
nin H2.
simpl. am.
change (inc (op a (list_iter op def (a0::t))) x).
ap H. am.
ap IHlist_sub. am. uhg;ir. inversion H4.
Qed.
Lemma list_sub_concat : forall x l l', list_sub l x -> list_sub l' x -> list_sub (l++l') x.
Proof.
ir. nin H. simpl;am.
simpl. constructor. am.
au.
Qed.
Lemma concat_list_sub : forall x l l', list_sub (l ++ l') x -> A (list_sub l x) (list_sub l' x).
Proof.
intros x.
assert (forall l0, list_sub l0 x -> forall l l', l0 = l ++ l' ->
A (list_sub l x) (list_sub l' x)).
intros l0 H. nin H;ir.
destruct l;destruct l';simpl in H;try inversion H;simpl.
ee;constructor.
destruct l. simpl;ee. constructor.
simpl in H1. wr H1. constructor;am.
simpl in H1. inversion H1;subst.
cp (IHlist_sub l l' (eq_refl (l ++ l'))).
ee;au. constructor;am.
ir. eapply H. ap H0. tv.
Qed.
Definition force_nil : forall T:Type, list T.
ir. exact nil.
Defined.
Lemma Permutation_sub : forall x l, list_sub l x -> forall l', Permutation l l' -> list_sub l' x.
Proof.
ir. nin H0.
constructor.
inversion H;subst;constructor;au.
inversion H;subst. inversion H4;subst.
constructor;try am;constructor;am.
au.
Qed.
Ltac mk_iter_aux op a b l l' := match a with
| op ?x ?a' => mk_iter_aux op a' b (x::l) l'
| _ => match b with
| op ?y ?b' => mk_iter_aux op a b' l (y::l')
| _ => change (eq (list_iter op emptyset (rev (a::l))) (list_iter op emptyset (rev (b::l'))))
end
end.
Ltac mk_iter op := match goal with
| |- eq ?a ?b => mk_iter_aux op a b (force_nil E) (force_nil E)
| _ => assert True
end.
(*step in solving Permutation (a::t) (l1++l1') by attempting to find an instance of a in l1'
and changing goal to (a::t) (l1 ++ a::l1')*)
Ltac Permchange a t l1 l1' := match l1' with
| cons a ?t' => change (Permutation (a::t) (l1 ++ a::t'))
| cons ?b ?t' => Permchange a t (l1 ++ (b::nil)) t'
end.
(*assumes lists are syntactic permutations, pre-simplified ! may fail if List.app terms present*)
Ltac solve_list_perm := match goal with
| |- Permutation ?l ?l' => try ap Permutation_refl;try (constructor;solve_list_perm);
match l with
| cons ?a ?t => Permchange a t (force_nil E) l';ap Permutation_cons_app;simpl;solve_list_perm
end
end.
End AAC_tools.
Module AAC_all.
Export AAC_tools.
Lemma aac_perm_eq : forall op, (forall x y z, op x (op y z) = op (op x y) z) ->
(forall x y, op x y = op y x) ->
forall l l', Permutation l l' ->
forall e, list_iter op e l = list_iter op e l'.
Proof.
ir. nin H1.
tv.
destruct l.
assert (l' = nil).
ap Permutation_nil. am. subst. tv.
destruct l'.
assert (e0::l = nil). ap Permutation_nil.
ap Permutation_sym. am.
inversion H2.
transitivity (op x (list_iter op e (e0::l))).
tv. rw IHPermutation. tv.
destruct l. simpl.
au.
transitivity (op y (op x (list_iter op e (e0::l)))).
tv. rw H. rw (H0 y). wr H. tv.
etransitivity;au.
Qed.
Ltac aa_normb_all Ha := repeat wr Ha.
Ltac aac_to_perm_all Ha Hc := try reflexivity;
match type of Hc with
| (forall x y, ?op x y = ?op y x) => aa_normb_all Ha; mk_iter op; ap (aac_perm_eq Ha Hc);simpl
end.
Ltac aac_solve_all Ha Hc := aac_to_perm_all Ha Hc; solve_list_perm.
End AAC_all.
Module AAC_lci.
Export AAC_tools.
Lemma aac_perm_eq : forall op x, is_lci op x -> associative op x -> commutative op x ->
forall l l', list_sub l x -> Permutation l l' -> forall e,
list_iter op e l = list_iter op e l'.
Proof.
ir. cp (Permutation_sub H2 H3). nin H3.
tv.
destruct l as [nil | x1 t].
apply Permutation_nil in H3. subst.
tv.
destruct l' as [nil | x1' t'].
symmetry in H3. apply Permutation_nil in H3. inversion H3.
change (op x0 (list_iter op e (x1::t)) = op x0 (list_iter op e (x1'::t'))).
rw IHPermutation.
tv. inversion H2;subst;au.
inversion H4;subst;au.
destruct l.
simpl. inversion H2;subst. inversion H8;subst. ap H1;au.
transitivity (op y (op x0 (list_iter op e (e0::l)))).
simpl;tv.
transitivity (op x0 (op y (list_iter op e (e0::l)))).
assert (inc x0 x). inversion H4;subst;au.
assert (inc y x). inversion H4;subst;au.
inversion H2;au.
assert (inc (list_iter op e (e0::l)) x).
ap lci_list_nonempty_inc. am. inversion H2;subst;inversion H10;subst;au.
uhg;ir. inversion H6.
transitivity (op (op y x0) (list_iter op e (e0::l))).
rw H0;au.
rw (H1 y H5 x0 H3). rw H0;au.
simpl. tv.
cp (Permutation_sub H2 H3_).
rw IHPermutation1. ap IHPermutation2.
am. am. am. am.
Qed.
Ltac solve_lci_inc Hlci := first [ ap Hlci; solve_lci_inc Hlci | am | tv].
Ltac aa_normb_lci Hlci Ha := try (wr Ha;[aa_normb_lci Hlci Ha | solve_lci_inc Hlci | solve_lci_inc Hlci | solve_lci_inc Hlci]).
Ltac uf_list_sub := simpl;match goal with
| |- list_sub nil _ => constructor
| |- list_sub _ _ => constructor;[idtac | uf_list_sub]
end.
Ltac aac_to_perm_lci op Hlci Ha Hc := try reflexivity;
aa_normb_lci Hlci Ha; mk_iter op; ap (aac_perm_eq Hlci Ha Hc);simpl;[uf_list_sub | idtac]
.
Ltac aac_solve_lci op Hlci Ha Hc := aac_to_perm_lci op Hlci Ha Hc; simpl;try solve_list_perm
.
Ltac aac_solve_monoid Hmon Hc := match type of Hmon with
| is_monoid ?op _ _ => aac_solve_lci op (and_P Hmon) (and_Q (and_Q Hmon)) Hc
| is_group ?op _ _ => aac_solve_lci op (and_P Hmon) (and_P (and_Q (and_Q Hmon))) Hc
end.
End AAC_lci.