This repository has been archived by the owner on Apr 21, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsyntax.v
855 lines (707 loc) · 24.3 KB
/
syntax.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
Require Import HoTT.
Require Import structures.
Local Open Scope list_scope.
Notation "[]" := nil : list_scope.
Module ListHelpers.
Definition tl {A} (l:list A) :=
match l with
| nil => nil
| a :: m => m
end.
Fixpoint onth {A : Type} (l:list A) (n:nat) {struct n} : option A :=
match n, l with
| O, x :: _ => Some x
| S n, _ :: l => onth l n
| _, _ => None
end.
Definition nil_cons {A} {x:A} {l:list A} : [] <> x :: l :=
fun eq =>
@paths_rec _ [] (fun l => match l with [] => _ | _ => _ end) tt _ eq.
Lemma cons_inj {A} {x y : A} {l k} : x :: l = y :: k -> x = y /\ l = k.
Proof.
intro eq.
split.
- exact (ap (fun a => match a with [] => x | z :: _ => z end) eq).
- exact (ap (fun a => match a with [] => [] | _ :: z => z end) eq).
Defined.
End ListHelpers.
Import ListHelpers.
Module NEList.
Export Magma.
Inductive NEList (A : Type) : Type :=
| single : A -> NEList A
| cons : A -> NEList A -> NEList A
.
Arguments single {_} _.
Arguments cons {_} _ _.
Fixpoint Napp {A} (l l' : (NEList A)) : (NEList A) :=
match l with
| single i => cons i l'
| cons i l => cons i (Napp l l')
end.
Section VarSec.
Context {A} {G : Gop A}.
Definition someOp : Gop (option A) := fun a b => match a,b with
| Some x, Some y => Some (gop x y)
| _, _ => None
end.
Fixpoint evalNE {B} (f : B -> option A) (l : (NEList B))
: option A := match l with
| cons i l => someOp (f i) (evalNE f l)
| single i => f i
end.
Global Instance someOp_assoc : forall {Hassoc : Associative G},
Associative someOp.
Proof.
red. destruct x,y,z;simpl;auto.
unfold gop;simpl. apply ap;apply Hassoc.
Defined.
Global Instance someOp_comm : forall {Hcomm : Commutative G},
Commutative someOp.
Proof.
red;destruct x,y;simpl;auto.
apply (ap (@Some _));apply Hcomm.
Defined.
Lemma evalNE_app : forall {Hassoc : Associative G},
forall {B} (f : B -> option A) l l',
evalNE f (Napp l l') = someOp (evalNE f l) (evalNE f l').
Proof.
induction l;intros;simpl in *.
reflexivity.
path_via (someOp (f a) (someOp (evalNE f l) (evalNE f l'))).
apply ap. apply IHl.
apply someOp_assoc.
Defined.
Lemma NEList_eq_dec : DecidablePaths A ->
DecidablePaths (NEList A).
Proof.
red. intros Ha.
induction x;destruct y.
destruct (Ha a a0);[left|right].
apply ap;assumption.
exact (fun H => n (ap (fun s => match s with
| single x => x | _ => a end) H)).
right;exact (fun H => transport (fun s => match s with
| single _ => Unit | _ => Empty end) H tt).
right;exact (fun H => transport (fun s => match s with
| single _ => Empty | _ => Unit end) H tt).
destruct (Ha a a0).
destruct (IHx y).
left;apply ap11;[apply ap|];assumption.
right;exact (fun H => n (ap (fun s => match s with
| cons _ z => z | single _ => x end) H)).
right;exact (fun H => n (ap (fun s => match s with
| cons z _ => z | _ => a end) H)).
Defined.
End VarSec.
Section Sort.
Context {A : Type}.
Variable order_dec : A -> A -> Bool.
Fixpoint sortInsert i l := match l with
| single j => if order_dec i j
then cons i (single j)
else cons j (single i)
| cons j l => if order_dec i j
then cons i (cons j l)
else cons j (sortInsert i l)
end.
Fixpoint sort l := match l with
| single i => single i
| cons i l => sortInsert i (sort l)
end.
Lemma sortInsert_correct : forall {B} {G:Gop B} {Hsg : IsSemigroup G},
forall (f : A -> option B) i l,
evalNE f (sortInsert i l) = evalNE f (cons i l).
Proof.
simpl. induction l.
- simpl. destruct (order_dec i a);simpl;first [reflexivity | apply someOp_comm].
- simpl. destruct (order_dec i a);simpl.
reflexivity.
path_via (someOp (f a) (someOp (f i) (evalNE f l))).
apply ap. assumption.
path_via (someOp (someOp (f a) (f i)) (evalNE f l)).
apply someOp_assoc.
path_via (someOp (someOp (f i) (f a)) (evalNE f l)).
apply ap10. apply ap. apply someOp_comm.
apply inverse;apply someOp_assoc.
Defined.
Lemma sort_correct : forall {B} {G:Gop B} {Hsg : IsSemigroup G},
forall (f : A -> option B) l, evalNE f (sort l) = evalNE f l.
Proof.
induction l;simpl.
- reflexivity.
- eapply concat.
apply sortInsert_correct. simpl.
apply ap. assumption.
Defined.
End Sort.
Arguments sort_correct {_} _ {_ _ _} _ _.
Definition nat_order_dec : nat -> nat -> Bool.
Proof.
intros n;induction n;intros m.
- (*0 < m *) destruct m;[exact false | exact true].
- (* S n < m *) destruct m.
(* S n < 0 *) exact false.
(* S n < S m *) exact (IHn m).
Defined.
Definition NEList_order_dec : forall {A} (order_dec : A -> A -> Bool),
forall l l' : NEList A, Bool.
Proof.
intros ? ? l;induction l as [x | x l];intro l';destruct l' as [y | y l'].
- (* [x] < [y] *) exact (order_dec x y).
- (* [x] < y::l', l' # [] *) exact (negb (order_dec y x)).
- (* x::l < [y], l # [] *) exact (negb (order_dec x y)).
- (* x::l < y::l', IHl is l < _ *) exact (orb (order_dec x y)
(andb (negb (order_dec y x)) (IHl l'))).
Defined.
Definition NEList_nat_order_dec := NEList_order_dec nat_order_dec.
End NEList.
Export NEList.
Module BinOpTree.
(*Import ListNotations.*)
Inductive T (A : Type) : Type :=
| Op : T A -> T A -> T A
| Val : A -> T A
.
Arguments Op {_} _ _.
Arguments Val {_} _.
Fixpoint evalTree {A} {G:Gop A} {B} (f : B -> option A) (t : T B) : option A :=
match t with
| Op t1 t2 => someOp (evalTree f t1) (evalTree f t2)
| Val i => f i
end.
Section Nota.
Fixpoint T2list {A} (t : T A) : (NEList A) :=
match t with
| Op t1 t2 => Napp (T2list t1) (T2list t2)
| Val i => single i
end.
Lemma T2list_correct : forall {A} {G : Gop A} {Hassoc : Associative G}
{B} (f : B -> option A) t, evalNE f (T2list t) = evalTree f t.
Proof.
induction t.
- simpl. path_via (someOp (evalNE f (T2list t1))
(evalNE f (T2list t2))).
apply evalNE_app.
apply ap11;[apply ap|];assumption.
- simpl. reflexivity.
Defined.
Section SortUse.
Context {A} {G : Gop A} {Hsg : IsSemigroup G}.
Context {B} {order_dec : B -> B -> Bool}.
Lemma sort_full : forall (f : B -> option A) t,
evalNE f (sort order_dec (T2list t)) = evalTree f t.
Proof.
intros.
path_via (evalNE f (T2list t)).
apply sort_correct. assumption.
apply T2list_correct.
Defined.
Lemma sort_inj : forall (f : B -> option A) t1 t2,
evalNE f (sort order_dec (T2list t1)) = evalNE f (sort order_dec (T2list t2)) ->
evalTree f t1 = evalTree f t2.
Proof.
intros ? ? ? H. eapply concat;[symmetry;apply sort_full|].
eapply concat;[apply H|]. apply sort_full.
Defined.
End SortUse.
Section Prefix.
Context {A : Type}.
(* prefix stuff should be moved so that it may work for types not in magmas *)
Inductive prefix : relation (list A) :=
| pref_nil : forall l, prefix nil l
| pref_cons : forall l l', prefix l l' -> forall x, prefix (x::l) (x::l')
.
Instance prefix_refl : Reflexive prefix.
Proof.
red. intro l;induction l;constructor;auto.
Defined.
Lemma cons_pref : forall x l l', prefix (x::l) l' ->
(l' = x::(tl l') /\ prefix l (tl l')).
Proof.
assert (H : forall l l', prefix l l' -> forall x l1, l = x::l1 ->
l' = x::(tl l') /\ prefix l1 (tl l')).
intros ? ? H;induction H.
- intros ? ? H.
destruct (nil_cons H).
- intros ? ? H0.
apply cons_inj in H0.
destruct H0 as [H0 H1]; destruct H0; destruct H1. simpl. split;auto.
- intros. apply H with (x::l);auto.
Defined.
Global Instance prefix_trans : Transitive prefix.
Proof.
red. intros l1 l2 l3 H H'.
revert H'. revert l3.
induction H.
- constructor.
- intros l3 H'. apply cons_pref in H'. destruct H' as [H0 H1].
destruct l3;simpl in *. destruct (nil_cons H0).
apply cons_inj in H0. destruct H0 as [H0 _]; destruct H0.
constructor. auto.
Defined.
Lemma app_prefix : forall l l', prefix l (l++l').
Proof.
induction l;intros;constructor;auto.
Defined.
Lemma prefix_app : forall l l', prefix l l' -> exists l0, l' = l++l0.
Proof.
induction 1 as [| ? ? ? IH].
econstructor;reflexivity.
destruct IH as [? p]. econstructor. simpl; apply ap. apply p.
Defined.
Lemma prefix_nth : forall l l', prefix l l' ->
forall i v, onth l i = Some v -> onth l' i = Some v.
Proof.
intros ? ? H;induction H.
- intros ? ? H;intros.
destruct i;simpl in H;destruct (transport (fun s => match s with
| None => Unit | _ => Empty end) H tt).
- intros ? ? H'. destruct i. apply H'.
apply IHprefix. apply H'.
Defined.
Global Instance prefix_antisymm : Relation.Antisymmetric prefix.
Proof.
intros ? ? H;induction H;intros H'.
destruct l;auto.
apply cons_pref in H'. destruct H' as [H _].
destruct (nil_cons H).
apply cons_pref in H'. destruct H' as [_ H'].
simpl in *. apply ap. auto.
Defined.
End Prefix.
Arguments prefix_trans {_ _ _ _} _ _.
Section XFind.
Variable A : Type.
Definition invariant s r i (e : A) := onth r i = Some e /\ prefix s r.
(* Tagging for controlling the search of instances *)
Structure xtagged := XTag {xuntag :> A}.
Definition extend_tag := XTag.
Definition recurse_tag := extend_tag.
Canonical Structure found_tag x := recurse_tag x.
(* Main structure
s : input sequence
r : output sequence. If elem_of is in the sequence, then it's equal to s,
otherwise it's equal to (elem_of :: s)
i : output index of elem_of in r *)
Structure xfind (s r : list A) (i : nat) := XFind {
elem_of :> xtagged;
x_nth :> onth r i = @Some A elem_of;
x_prefix :> prefix s r
}.
(*Implicit Arguments XFind [].*)
Canonical Structure found_struct x t :=
XFind (x :: t) (x :: t) 0 (found_tag x) (idpath) (prefix_refl _).
Lemma recurse_pf {i : nat} (y : A) {s r : list A} (f : xfind s r i) :
invariant (y :: s) (y :: r) (S i) f.
Proof. red.
simpl. split. apply f.
constructor. apply f.
Defined.
Canonical Structure recurse_struct i y t r (f : xfind t r i) :=
XFind (y :: t) (y :: r) (S i) (recurse_tag f) f (pref_cons _ _ f _).
Canonical Structure extend_struct x :=
XFind [] (x :: []) 0 (extend_tag x) idpath (pref_nil _).
End XFind.
Arguments elem_of {_ _ _ _} _.
Arguments xuntag {_} _.
Arguments xfind {_} _ _ _.
Section Ast.
Context {A : Type} {G : Gop A}.
Structure tagged := Tag { untag :> A }.
Definition ctx := list A.
Inductive valid : ctx -> T nat -> Type :=
| valid_op : forall c t1, valid c t1 -> forall t2, valid c t2 ->
valid c (Op t1 t2)
| valid_val : forall c i v (Hv : onth c i = Some v),
valid c (Val i).
Arguments valid_op {_ _} _ {_} _.
Arguments valid_val {_ _ _} _.
Lemma valid_prefix : forall c t, valid c t -> forall c', prefix c c' ->
valid c' t.
Proof.
intros ? ? H;induction H;intros ? H'.
constructor;auto.
econstructor.
eapply prefix_nth. apply H'. apply Hv.
Defined.
Arguments valid_prefix {_ _} _ {_} _.
Lemma valid_prefix_eval : forall c t, valid c t ->
forall c', prefix c c' ->
evalTree (onth c) t = evalTree (onth c') t.
Proof.
intros ? ? H;induction H;intros ? H';simpl in *.
apply ap11;[apply ap;apply IHvalid1|apply IHvalid2];auto.
path_via (Some v).
symmetry;eapply prefix_nth. apply H'. assumption.
Defined.
Lemma valid_ext : forall c t, valid c t ->
sigT (fun v => evalTree (onth c) t = Some v).
Proof.
intros ? ? H;induction H.
destruct IHvalid1 as [v1 H1].
destruct IHvalid2 as [v2 H2].
exists (gop v1 v2). simpl.
path_via (someOp (Some v1) (Some v2)).
intros;apply ap11;[apply ap|];auto.
simpl. exists v;assumption.
Defined.
Arguments valid_ext {_ _} _.
Lemma ext_valid : forall c t v, evalTree (onth c) t = Some v -> valid c t.
Proof.
induction t;intros ? H.
simpl in H. destruct (evalTree (onth c) t1), (evalTree (onth c) t2);
try solve [destruct
(transport (fun s => match s with | None => Unit | _ => Empty end) H tt)].
constructor;eauto.
eapply valid_val. apply H.
Defined.
Lemma prefix_eval : forall c c', prefix c c' -> forall t (v : A),
evalTree (onth c) t = Some v -> evalTree (onth c') t = Some v.
Proof.
intros. path_via (evalTree (onth c) t).
symmetry. apply valid_prefix_eval.
apply ext_valid with v. assumption.
assumption.
Defined.
Structure ast (c c' : ctx) (t : T nat) := Ast {
val :> tagged;
ast_prefix :> prefix c c';
ast_pr :> evalTree (onth c') t = @Some A val
}.
Arguments ast_prefix {_ _ _} _.
Arguments val {_ _ _} _.
Definition var_tag t := Tag t.
Canonical Structure op_tag t := var_tag t.
Lemma ast_pr_op : forall {i j k : ctx} {t1 t2 : T nat}
(a1 : ast i j t1) (a2 : ast j k t2),
evalTree (onth k) (Op t1 t2) = @Some A (op_tag (G a1 a2)).
Proof.
intros ? ? ? ? ? ? ?.
change (someOp (evalTree (onth k) t1) (evalTree (onth k) t2) =
someOp (@Some A a1) (@Some A a2)).
apply ap11;[apply ap|].
eapply prefix_eval. apply a2. apply a1.
apply a2.
Defined.
Canonical Structure ast_op (i j k : ctx) (t1 t2 : T nat)
(a1 : ast i j t1) (a2 : ast j k t2) :=
Ast i k (Op t1 t2) (op_tag (G a1 a2)) (prefix_trans a1 a2)
(ast_pr_op a1 a2).
Canonical Structure ast_var (i j : ctx) (n : nat) (f : xfind i j n) :=
Ast i j (Val n) (var_tag (xuntag (elem_of f))) f f.
Lemma untag_injective : forall x y, untag x = untag y -> x=y.
Proof.
intros. destruct x,y.
apply ap;assumption.
Defined.
Context {Hsg : IsSemigroup G}.
Definition someRel {T T' : Type} (R : T -> T' -> Type)
: option T -> option T' -> Type := fun x y => match x,y with
| Some a, Some b => R a b
| _, _ => Empty
end.
Lemma some_injective : forall {T T' : Type} (R : T -> T' -> Type)
x y, someRel R (Some x) (Some y) -> R x y.
Proof.
intros ? ? ? ? ? H.
apply H.
Defined.
Lemma ast_use : forall (R : relation A) {i j : ctx} {t1 t2 : T nat}
(f1 : ast [] i t1) (f2 : ast i j t2),
someRel R (evalNE (onth j) (sort nat_order_dec (T2list t1)))
(evalNE (onth j) (sort nat_order_dec (T2list t2))) ->
R (untag (val f1)) (untag (val f2)).
Proof.
intros ? ? ? ? ? ? ? H.
apply some_injective.
pattern (Some (untag (val f1)));eapply transport;[|eapply transport;[|apply H]];
(eapply concat;[apply sort_full|]);[eapply prefix_eval;[apply f2|apply f1]|apply f2].
Defined.
End Ast.
End Nota.
Ltac ssrapply l :=
first
[refine l
|refine (l _)
|refine (l _ _)
|refine (l _ _ _)
|refine (l _ _ _ _)
|refine (l _ _ _ _ _)
|refine (l _ _ _ _ _ _)
|refine (l _ _ _ _ _ _ _)
|refine (l _ _ _ _ _ _ _ _)
].
End BinOpTree.
Module Distributive.
Export BinOpTree.
Export Ring.
Inductive T2 : Type :=
| Plus : T2 -> T2 -> T2
| Mult : T2 -> T2 -> T2
| Val2 : nat -> T2
.
Definition somePlus {A} {G : Symbols.Plus A} : Symbols.Plus (option A) := someOp.
Definition someMult {A} {G : Symbols.Mult A} : Symbols.Mult (option A) := someOp.
Fixpoint evalT2 {A} {G : Prering A} (f : _ -> option A) (t : T2) : option A :=
match t with
| Plus x y => somePlus (evalT2 f x) (evalT2 f y)
| Mult x y => someMult (evalT2 f x) (evalT2 f y)
| Val2 i => f i
end.
Notation Flat2 := (T (NEList nat)).
Notation FPlus := (@Op (NEList nat)).
Notation ValL := (@Val (NEList nat)).
Definition evalFlat2 {A} {G : Prering A} (f : nat -> option A) (t : Flat2)
: option A := @evalTree A (+) _
(fun l => @evalNE _ (°) _ f l) t.
(* eval (distribute t1 t2) = (eval t1) * (eval t2) *)
Fixpoint distribute (t1 : Flat2) : Flat2 -> Flat2 := fix f (t2 : Flat2) :=
match t1, t2 with
| Op x y, Op x' y' => FPlus (f x') (f y')
| Op x y, Val l' => FPlus (distribute x (ValL l')) (distribute y (ValL l'))
| Val l', Op x y => FPlus (f x) (f y)
| Val l1, Val l2 => ValL (Napp l1 l2)
end.
Fixpoint flatten (t : T2) : Flat2 := match t with
| Plus x y => FPlus (flatten x) (flatten y)
| Mult x y => distribute (flatten x) (flatten y)
| Val2 i => ValL (single i)
end.
Fixpoint Flat2_order_in (t : Flat2) : Flat2 := match t with
| Op x y => Op (Flat2_order_in x) (Flat2_order_in y)
| Val l => Val (sort nat_order_dec l)
end.
Section Mag2.
Context {A} {G : Prering A}.
Context {Hadd : @IsSemigroup A (+)} {Hmult : @IsSemigroup A (°)}
{Hdistrib : Distributes G}.
Lemma some_distrib_right : forall a b c : option A,
someMult (somePlus b c) a = somePlus (someMult b a) (someMult c a).
Proof.
destruct a,b,c;try reflexivity.
simpl. apply ap. apply Hdistrib.
Defined.
Lemma some_distrib_left : forall a b c : option A,
someMult a (somePlus b c) = somePlus (someMult a b) (someMult a c).
Proof.
destruct a,b,c;try reflexivity.
simpl. apply ap. apply Hdistrib.
Defined.
Local Open Scope type_scope.
Lemma distribute_ok : forall (f : _ -> option A) t1 t2,
evalFlat2 f (distribute t1 t2) = someMult (evalFlat2 f t1) (evalFlat2 f t2).
Proof.
assert (Hleft : forall (f : _ -> option A) l x,
evalFlat2 f (distribute x (ValL l)) =
someMult (evalFlat2 f x) (evalFlat2 f (ValL l))).
intros f l. simpl.
assert (X:(sigT (fun v => evalFlat2 f (ValL l) = Some v))
+ (evalFlat2 f (ValL l) = None)).
destruct (evalFlat2 f (ValL l));eauto.
destruct X as [[g Hl] | Hl];pattern (evalFlat2 f (ValL l));
apply (transport _ (inverse Hl)).
- induction x.
simpl. path_via (someMult (somePlus (evalFlat2 f x1) (evalFlat2 f x2))
(Some g)).
destruct (evalFlat2 f x1);[destruct (evalFlat2 f x2)|].
simpl. eapply concat.
apply (@ap11 _ _ (somePlus (evalFlat2 f (distribute x1 (ValL l)))))
;[apply ap;apply IHx1|apply IHx2].
simpl;apply ap;symmetry;apply Hdistrib.
simpl. simpl in IHx2. path_via (somePlus (evalFlat2 f (distribute x1 (ValL l)))
(evalFlat2 f (distribute x2 (ValL l)))).
pattern (evalFlat2 f (distribute x2 (ValL l)));
apply (transport _ (inverse IHx2)).
destruct (evalFlat2 f (distribute x1 (ValL l)));reflexivity.
simpl. simpl in IHx1. path_via (somePlus (evalFlat2 f (distribute x1 (ValL l)))
(evalFlat2 f (distribute x2 (ValL l)))).
pattern (evalFlat2 f (distribute x1 (ValL l)));
apply (transport _ (inverse IHx1)). simpl. reflexivity.
simpl. unfold someMult. eapply concat;[apply @evalNE_app|]. apply _.
apply ap. apply Hl.
- induction x.
simpl. path_via (somePlus (evalFlat2 f (distribute x1 (ValL l)))
(evalFlat2 f (distribute x2 (ValL l)))).
path_via (someMult (somePlus (evalFlat2 f x1) (evalFlat2 f x2)) None).
destruct (evalFlat2 f x1), (evalFlat2 f x2);
simpl in *; (path_via (@somePlus A _ None None);
apply ap11;[apply ap|];assumption).
simpl.
eapply concat. apply (@evalNE_app A (°)). apply _.
apply ap. assumption.
(* Hleft done *)
- intros l t1 t2;revert t1.
induction t2;auto.
induction t1.
path_via (somePlus (evalFlat2 l (distribute (FPlus t1_1 t1_2) t2_1))
(evalFlat2 l (distribute (FPlus t1_1 t1_2) t2_2))).
pattern (evalFlat2 l (distribute (FPlus t1_1 t1_2) t2_2)).
eapply transport. symmetry;apply IHt2_2.
pattern (evalFlat2 l (distribute (FPlus t1_1 t1_2) t2_1)).
eapply transport. symmetry;apply IHt2_1.
path_via (somePlus (someMult (somePlus (evalFlat2 l t1_1) (evalFlat2 l t1_2))
(evalFlat2 l t2_1))
(someMult (somePlus (evalFlat2 l t1_1) (evalFlat2 l t1_2)) (evalFlat2 l t2_2))).
path_via (someMult (somePlus (evalFlat2 l t1_1) (evalFlat2 l t1_2))
(somePlus (evalFlat2 l t2_1) (evalFlat2 l t2_2))).
repeat first [rewrite some_distrib_left | rewrite some_distrib_right].
reflexivity.
path_via (somePlus
(someMult (evalFlat2 l (ValL a)) (evalFlat2 l t2_1))
(someMult (evalFlat2 l (ValL a)) (evalFlat2 l t2_2))).
path_via (somePlus (evalFlat2 l (distribute (ValL a) t2_1))
(evalFlat2 l (distribute (ValL a) t2_2))).
apply ap11;[apply ap|]; auto.
symmetry. apply some_distrib_left.
Defined.
Lemma flatten_ok : forall (l : _ -> option A) t,
evalFlat2 l (flatten t) = evalT2 l t.
Proof.
induction t.
simpl. path_via (somePlus (evalFlat2 l (flatten t1)) (evalFlat2 l (flatten t2))).
apply ap11;[apply ap|];assumption.
simpl. eapply concat;[apply distribute_ok|].
apply ap11;[apply ap|];assumption.
reflexivity.
Defined.
Lemma order_in_ok : forall (f : _ -> option A) t,
evalFlat2 f (Flat2_order_in t) = evalFlat2 f t.
Proof.
induction t.
path_via (somePlus (evalFlat2 f (Flat2_order_in t1))
(evalFlat2 f (Flat2_order_in t2))).
path_via (somePlus (evalFlat2 f t1) (evalFlat2 f t2)).
apply ap11;[apply ap|];assumption.
unfold evalFlat2;simpl. apply (@sort_correct _ _ A (°)). exact _.
Defined.
End Mag2.
Section Ast2.
Context {A} {G : Prering A}.
(*note: cannot reuse BinOpTree.tagged because its canonical projections would override our new ones *)
Structure tagged := Tag { untag :> A }.
Lemma prefix_eval2 : forall c c', prefix c c' -> forall (t : T2) (v : A),
evalT2 (onth c) t = Some v -> evalT2 (onth c') t = Some v.
Proof.
induction t;intros.
- simpl in *.
destruct (evalT2 (onth c) t1) as [v1 |];
[destruct (evalT2 (onth c) t2) as [v2 |]|].
eapply concat;[|apply X0]. apply ap11;[apply ap|];auto.
simpl in X0. destruct (transport (fun s => match s with
| None => Unit | _ => Empty end) X0 tt).
simpl in X0. destruct (transport (fun s => match s with
| None => Unit | _ => Empty end) X0 tt).
- simpl in *.
destruct (evalT2 (onth c) t1) as [v1 |];
[destruct (evalT2 (onth c) t2) as [v2 |]|].
eapply concat;[|apply X0]. apply ap11;[apply ap|];auto.
simpl in X0. destruct (transport (fun s => match s with
| None => Unit | _ => Empty end) X0 tt).
simpl in X0. destruct (transport (fun s => match s with
| None => Unit | _ => Empty end) X0 tt).
- simpl in *. eapply prefix_nth;eauto.
Defined.
Structure ast2 (c c' : ctx) (t : T2) := Ast2 {
val2 :> tagged;
ast2_prefix :> prefix c c';
ast2_pr :> evalT2 (onth c') t = Some (untag val2)
}.
Arguments ast2_prefix {_ _ _} _.
Arguments val2 {_ _ _} _.
Definition var_tag (t:A) := Tag t.
Definition mult_tag (t:A) := var_tag t.
Canonical Structure plus_tag (t:A) := mult_tag t.
Lemma ast2_pr_plus : forall {i j k : ctx} {t1 t2 : T2}
(a1 : ast2 i j t1) (a2 : ast2 j k t2),
evalT2 (onth k) (Plus t1 t2)
= Some (untag (plus_tag (untag a1 + untag a2))).
Proof.
intros ? ? ? ? ? ? ?.
change (somePlus (evalT2 (onth k) t1) (evalT2 (onth k) t2) =
somePlus (Some (untag a1)) (Some (untag a2))).
apply ap11;[apply ap|].
apply prefix_eval2 with j. apply a2. apply a1.
apply a2.
Defined.
Canonical Structure ast2_plus (i j k : ctx) (t1 t2 : T2)
(a1 : ast2 i j t1) (a2 : ast2 j k t2) :=
Ast2 i k (Plus t1 t2) (plus_tag ((untag a1) + (untag a2)))
(prefix_trans _ _ _ a1 a2) (ast2_pr_plus a1 a2).
Lemma ast2_pr_mult : forall {i j k : ctx} {t1 t2 : T2}
(a1 : ast2 i j t1) (a2 : ast2 j k t2),
evalT2 (onth k) (Mult t1 t2)
= Some (untag (mult_tag ((untag a1) ° (untag a2)))).
Proof.
intros ? ? ? ? ? ? ?.
change (someMult (evalT2 (onth k) t1) (evalT2 (onth k) t2) =
someMult (Some (untag a1)) (Some (untag a2))).
apply ap11;[apply ap|].
apply prefix_eval2 with j. apply a2. apply a1.
apply a2.
Defined.
Canonical Structure ast2_mult (i j k : ctx) (t1 t2 : T2)
(a1 : ast2 i j t1) (a2 : ast2 j k t2) :=
Ast2 i k (Mult t1 t2) (mult_tag ((untag a1) ° (untag a2)))
(prefix_trans _ _ _ a1 a2) (ast2_pr_mult a1 a2).
Canonical Structure ast2_var (i j : ctx) (n : nat) (f : xfind _ i j n) :=
Ast2 i j (Val2 n) (var_tag (xuntag _ (elem_of _ _ _ _ f))) f f.
Section Minimal.
Context {Hadd : @IsSemigroup A (+)} {Hmult : @IsSemigroup A (°)}
{Hdistrib : Distributes G}.
Lemma ast2_use : forall R {i j : ctx} {t1 t2 : T2}
(f1 : ast2 [] i t1) (f2 : ast2 i j t2),
someRel R (evalFlat2 (onth j) (Flat2_order_in (flatten t1)))
(evalFlat2 (onth j) (Flat2_order_in (flatten t2))) ->
R (untag (val2 f1)) (untag (val2 f2)).
Proof.
intros ? ? ? ? ? ? ? H.
apply some_injective.
pattern (Some (untag (val2 f1)));eapply transport;[|eapply transport;[|apply H]];
(eapply concat;[ apply order_in_ok|
eapply concat;[ apply flatten_ok|]]).
eapply prefix_eval2. apply f2. apply f1.
apply f2.
Defined.
End Minimal.
Lemma ast2_semiring : forall {Hsemir : IsSemiring G},
forall R {i j : ctx} {t1 t2 : T2}
(f1 : ast2 [] i t1) (f2 : ast2 i j t2),
someRel R (evalFlat2 (onth j) (Flat2_order_in (flatten t1)))
(evalFlat2 (onth j) (Flat2_order_in (flatten t2))) ->
R (untag (val2 f1)) (untag (val2 f2)).
Proof.
intro.
apply @ast2_use;apply _.
Defined.
Definition full_simplify (t : T2) :=
sort NEList_nat_order_dec (T2list (Flat2_order_in (flatten t))).
Lemma ast2_full_semiring : forall {Hsemir : IsSemiring G},
forall R {i j : ctx} {t1 t2 : T2}
(f1 : ast2 [] i t1) (f2 : ast2 i j t2),
someRel R (@evalNE A (+) _ (fun l => @evalNE A (°) _ (onth j) l)
(full_simplify t1))
(@evalNE A (+) _ (fun l => @evalNE A (°) _ (onth j) l)
(full_simplify t2))
-> R (untag (val2 f1)) (untag (val2 f2)).
Proof.
intros ? ? ? ? ? ? ? ? H.
apply (ast2_semiring R).
unfold evalFlat2.
eapply transport;[|pattern (@evalTree A (@plus A G) (NEList nat)
(fun l : NEList nat => @evalNE A (@mult A G) nat (onth j) l)
(Flat2_order_in (flatten t1))); eapply transport;[|apply H]];
(unfold full_simplify;
eapply concat;[ apply sort_correct; apply _|
apply T2list_correct]).
Defined.
End Ast2.
Lemma test2 : forall A (G : Prering A) {Hsemir : IsSemiring G},
forall a b c : A, a°(b+c) = a°c + a°b.
Proof.
intros.
refine (@ast2_full_semiring A _ Hsemir paths _ _ _ _ _ _ _).
reflexivity.
Fail idtac.
Abort.
End Distributive.