-
Notifications
You must be signed in to change notification settings - Fork 135
/
SofienKaabar.py
155 lines (109 loc) · 4.4 KB
/
SofienKaabar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import numpy as np
def rsi(Data, rsi_lookback, what1, what2):
# From exponential to smoothed
rsi_lookback = (rsi_lookback * 2) - 1
# Get the difference in price from previous step
delta = []
for i in range(len(Data)):
try:
diff = Data[i, what1] - Data[i - 1, what1]
delta = np.append(delta, diff)
except IndexError:
pass
delta = np.insert(delta, 0, 0, axis = 0)
delta = delta[1:]
# Make the positive gains (up) and negative gains (down) Series
up, down = delta.copy(), delta.copy()
up[up < 0] = 0
down[down > 0] = 0
up = np.array(up)
down = np.array(down)
roll_up = up
roll_down = down
roll_up = np.reshape(roll_up, (-1, 1))
roll_down = np.reshape(roll_down, (-1, 1))
roll_up = adder(roll_up, 3)
roll_down = adder(roll_down, 3)
roll_up = ema(roll_up, 2, rsi_lookback, what2, 1)
roll_down = ema(abs(roll_down), 2, rsi_lookback, what2, 1)
roll_up = roll_up[rsi_lookback:, 1:2]
roll_down = roll_down[rsi_lookback:, 1:2]
Data = Data[rsi_lookback + 1:,]
# Calculate the RS & RSI
RS = roll_up / roll_down
RSI = (100.0 - (100.0 / (1.0 + RS)))
RSI = np.array(RSI)
RSI = np.reshape(RSI, (-1, 1))
RSI = RSI[1:,]
Data = np.concatenate((Data, RSI), axis = 1)
return Data
def ma(Data, lookback, what, where):
for i in range(len(Data)):
try:
Data[i, where] = (Data[i - lookback + 1:i + 1, what].mean())
except IndexError:
pass
return Data
def ema(Data, alpha, lookback, what, where):
# alpha is the smoothing factor
# window is the lookback period
# what is the column that needs to have its average calculated
# where is where to put the exponential moving average
alpha = alpha / (lookback + 1.0)
beta = 1 - alpha
# First value is a simple SMA
Data = ma(Data, lookback, what, where)
# Calculating first EMA
Data[lookback + 1, where] = (Data[lookback + 1, what] * alpha) + (Data[lookback, where] * beta)
# Calculating the rest of EMA
for i in range(lookback + 2, len(Data)):
try:
Data[i, where] = (Data[i, what] * alpha) + (Data[i - 1, where] * beta)
except IndexError:
pass
return Data
# The function to add a certain number of columns
def adder(Data, times):
for i in range(1, times + 1):
z = np.zeros((len(Data), 1), dtype = float)
Data = np.append(Data, z, axis = 1)
return Data
# The function to deleter a certain number of columns
def deleter(Data, index, times):
for i in range(1, times + 1):
Data = np.delete(Data, index, axis = 1)
return Data
# The function to delete a certain number of rows from the beginning
def jump(Data, jump):
Data = Data[jump:, ]
return Data
def stochastic(Data, lookback, what, high, low, where):
for i in range(len(Data)):
try:
Data[i, where] = (Data[i, what] - min(Data[i - lookback + 1:i + 1, low])) / (max(Data[i - lookback + 1:i + 1, high]) - min(Data[i - lookback + 1:i + 1, low]))
except ValueError:
pass
Data[:, where] = Data[:, where] * 100
return Data
# The Data variable refers to the OHLC array
# The lookback variable refers to the period (5, 14, 21, etc.)
# The what variable refers to the closing price
# The high variable refers to the high price
# The low variable refers to the low price
# The where variable refers to where to put the Oscillator
def stoch_rsi(Data, lookback, where):
# Calculating RSI of the Closing prices
Data = rsi(Data, lookback, 3, 0)
# Adding two columns
Data = adder(Data, 2)
for i in range(len(Data)):
try:
Data[i, where + 1] = (Data[i, where] - min(Data[i - lookback + 1:i + 1, where])) / (max(Data[i - lookback + 1:i + 1, where]) - min(Data[i - lookback + 1:i + 1, where]))
except ValueError:
pass
Data[:, where + 1] = Data[:, where + 1] * 100
# Signal Line using a 3-period moving average
Data = ma(Data, 3, where + 1, where + 2)
Data = deleter(Data, where, 2)
Data = jump(Data, lookback)
return Data