forked from tgangwani/GA3C-DeepNavigation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProcessStats.py
111 lines (95 loc) · 4.81 KB
/
ProcessStats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import sys
if sys.version_info >= (3,0):
from queue import Queue as queueQueue
else:
from Queue import Queue as queueQueue
from datetime import datetime
from multiprocessing import Process, Queue, Value
import numpy as np
import time
from Config import Config
from Environment import Environment
from NetworkVP import NetworkVP
class ProcessStats(Process):
def __init__(self):
super(ProcessStats, self).__init__()
self.episode_log_q = Queue(maxsize=100)
self.episode_count = Value('i', 0)
self.training_count = Value('i', 0)
self.should_save_model = Value('i', 0)
self.trainer_count = Value('i', 0)
self.predictor_count = Value('i', 0)
self.agent_count = Value('i', 0)
self.total_frame_count = 0
self.model = NetworkVP(Config.DEVICE, Config.NETWORK_NAME, Environment().get_num_actions())
def FPS(self):
# average FPS from the beginning of the training (not current FPS)
return np.ceil(self.total_frame_count / (time.time() - self.start_time))
def TPS(self):
# average TPS from the beginning of the training (not current TPS)
return np.ceil(self.training_count.value / (time.time() - self.start_time))
def run(self):
with open("/home/lsy/Desktop/results/%s" % Config.RESULTS_FILENAME, 'a') as results_logger:
rolling_frame_count = 0
rolling_reward = 0
results_q = queueQueue(maxsize=Config.STAT_ROLLING_MEAN_WINDOW)
self.start_time = time.time()
first_time = datetime.now()
while True:
episode_time, reward, length, steps = self.episode_log_q.get()
results_logger.write('%d\n' % (reward))
print("reward:"+str(reward))
results_logger.flush()
self.total_frame_count += length
self.episode_count.value += 1
rolling_frame_count += length
rolling_reward += reward
if results_q.full():
old_episode_time, old_reward, old_length = results_q.get()
rolling_frame_count -= old_length
rolling_reward -= old_reward
first_time = old_episode_time
results_q.put((episode_time, reward, length))
if self.episode_count.value % Config.SAVE_FREQUENCY == 0:
self.should_save_model.value = 1
if self.episode_count.value % Config.PRINT_STATS_FREQUENCY == 0:
print(
'[Time: %8d] '
'[Steps: %8d] '
'[Episode: %8d Score: %10.4f] '
'[RScore: %10.4f RPPS: %5d] '
'[PPS: %5d TPS: %5d] '
'[NT: %2d NP: %2d NA: %2d]'
% (int(time.time()-self.start_time),
steps,
self.episode_count.value, reward,
rolling_reward / results_q.qsize(),
rolling_frame_count / (datetime.now() - first_time).total_seconds(),
self.FPS(), self.TPS(),
self.trainer_count.value, self.predictor_count.value, self.agent_count.value))
sys.stdout.flush()