-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathface_landmark.py
190 lines (148 loc) · 6.63 KB
/
face_landmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import torch
import numpy as np
import cv2
import onnx
import onnxruntime
import math
class FaceLandmark(object):
def __init__(self):
self.model_path = r'model/FaceLandmark.onnx'
self.onnx_model = onnx.load(self.model_path)
onnx.checker.check_model(self.onnx_model)
self.ort_session = onnxruntime.InferenceSession(self.model_path)
self.image_size = 128
self.min_face = 100
self.iou_thres = 0.5
self.thres = 1
self.filter = OneEuroFilter()
self.previous_landmarks_set = None
def run(self, image, bbox):
processed_image, details = self.preprocess(image, bbox)
ort_inputs = {self.ort_session.get_inputs()[0].name: self.to_numpy(processed_image)}
result = self.ort_session.run(None, ort_inputs)
landmarks = result[0][0, :1946].reshape(-1, 2)
states = result[(1946 + 3):]
landmarks = self.postprocess(landmarks, details)
return np.array(landmarks), np.array(states)
def show_result(self, image, landmark):
for point in landmark:
cv2.circle(image, center=(int(point[0]), int(point[1])),
color=(255, 122, 122), radius=1, thickness=1)
cv2.imshow('', image)
cv2.waitKey(1)
def preprocess(self, image, bbox):
bbox_width = bbox[2] - bbox[0]
bbox_height = bbox[3] - bbox[1]
if bbox_width <= self.min_face or bbox_height <= self.min_face:
return None, None
add = int(max(bbox_width, bbox_height))
bimg = cv2.copyMakeBorder(image, add, add, add, add,
borderType=cv2.BORDER_CONSTANT,
value=np.array([127., 127., 127.]))
bbox += add
face_width = (1 + 2 * 0.1) * bbox_width
face_height = (1 + 2 * 0.2) * bbox_height
center = [(bbox[0] + bbox[2]) // 2, (bbox[1] + bbox[3]) // 2]
bbox[0] = center[0] - face_width // 2
bbox[1] = center[1] - face_height // 2
bbox[2] = center[0] + face_width // 2
bbox[3] = center[1] + face_height // 2
# crop
bbox = bbox.astype(np.int)
crop_image = bimg[bbox[1]:bbox[3], bbox[0]:bbox[2], :]
h, w, _ = crop_image.shape
crop_image = cv2.resize(crop_image, (self.image_size, self.image_size))
crop_image = cv2.cvtColor(crop_image, cv2.COLOR_RGB2GRAY)
crop_image = np.expand_dims(crop_image, axis=0)
crop_image = np.expand_dims(crop_image, axis=0)
crop_image = torch.from_numpy(crop_image).detach().float()
return crop_image, [h, w, bbox[1], bbox[0], add]
def postprocess(self, landmark, detail):
landmark[:, 0] = landmark[:, 0] * detail[1] + detail[3] - detail[4]
landmark[:, 1] = landmark[:, 1] * detail[0] + detail[2] - detail[4]
return landmark
def to_numpy(self, tensor):
return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()
def calculate(self, now_landmarks_set):
if self.previous_landmarks_set is None or self.previous_landmarks_set.shape[0]==0:
self.previous_landmarks_set = now_landmarks_set
result = now_landmarks_set
else:
if self.previous_landmarks_set.shape[0] == 0:
return now_landmarks_set
else:
result = []
for i in range(now_landmarks_set.shape[0]):
not_in_flag = True
for j in range(self.previous_landmarks_set.shape[0]):
if self.iou(now_landmarks_set[i], self.previous_landmarks_set[j]) > self.iou_thres:
result.append(self.smooth(now_landmarks_set[i], self.previous_landmarks_set[j]))
not_in_flag = False
break
if not_in_flag:
result.append(now_landmarks_set[i])
result = np.array(result)
self.previous_landmarks_set=result
return result
def iou(self, p_set0, p_set1):
rec1=[np.min(p_set0[:, 0]), np.min(p_set0[:, 1]), np.max(p_set0[:, 0]), np.max(p_set0[:, 1])]
rec2 = [np.min(p_set1[:, 0]), np.min(p_set1[:, 1]), np.max(p_set1[:, 0]), np.max(p_set1[:, 1])]
# computing area of each rectangles
S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1])
S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1])
# computing the sum_area
sum_area = S_rec1 + S_rec2
# find the each edge of intersect rectangle
x1 = max(rec1[0], rec2[0])
y1 = max(rec1[1], rec2[1])
x2 = min(rec1[2], rec2[2])
y2 = min(rec1[3], rec2[3])
# judge if there is an intersect
intersect = max(0, x2 - x1) * max(0, y2 - y1)
return intersect / (sum_area - intersect)
def smooth(self, now_landmarks, previous_landmarks):
result=[]
for i in range(now_landmarks.shape[0]):
dis = np.sqrt(np.square(now_landmarks[i][0] - previous_landmarks[i][0]) + np.square(now_landmarks[i][1] - previous_landmarks[i][1]))
if dis < self.thres:
result.append(previous_landmarks[i])
else:
result.append(self.filter(now_landmarks[i], previous_landmarks[i]))
return np.array(result)
class OneEuroFilter:
def __init__(self, dx0=0.0, min_cutoff=1.0, beta=0.0,
d_cutoff=1.0):
"""Initialize the one euro filter."""
# The parameters.
self.min_cutoff = float(min_cutoff)
self.beta = float(beta)
self.d_cutoff = float(d_cutoff)
# Previous values.
self.dx_prev = float(dx0)
#self.t_prev = float(t0)
def __call__(self, x,x_prev):
if x_prev is None:
return x
"""Compute the filtered signal."""
t_e = 1
# The filtered derivative of the signal.
a_d = self.smoothing_factor(t_e, self.d_cutoff)
dx = (x - x_prev) / t_e
dx_hat = self.exponential_smoothing(a_d, dx, self.dx_prev)
# The filtered signal.
cutoff = self.min_cutoff + self.beta * abs(dx_hat)
a = self.smoothing_factor(t_e, cutoff)
x_hat = self.exponential_smoothing(a, x, x_prev)
# Memorize the previous values.
self.dx_prev = dx_hat
return x_hat
def smoothing_factor(self, t_e, cutoff):
r = 2 * math.pi * cutoff * t_e
return r / (r + 1)
def exponential_smoothing(self, a, x, x_prev):
return a * x + (1 - a) * x_prev
if __name__ == '__main__':
image = cv2.imread('data/1.jpg')
bbox = np.array([117.58737, 58.62614, 354.0737, 401.39395])
handle = FaceLandmark()
handle.run(image, bbox)