forked from rozgo/gst-torch
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmotiontransfer.rs
296 lines (268 loc) · 10.5 KB
/
motiontransfer.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
use std::env;
use std::i32;
use std::sync::Mutex;
use crate::caps;
use crate::cata;
use crate::registry;
use glib::subclass;
use gst;
use gst_video;
use tch;
use tch::Tensor;
const WIDTH: i32 = 256;
const HEIGHT: i32 = 256;
lazy_static! {
static ref CAPS: Mutex<gst::Caps> = Mutex::new(gst::Caps::new_simple(
"video/x-raw",
&[
(
"format",
&gst::List::new(&[&gst_video::VideoFormat::Rgb.to_str()]),
),
("width", &WIDTH),
("height", &HEIGHT),
(
"framerate",
&gst::FractionRange::new(gst::Fraction::new(0, 1), gst::Fraction::new(i32::MAX, 1),),
),
],
));
static ref DETECTOR_MODEL: Mutex<tch::CModule> = Mutex::new(
tch::CModule::load(
env::var("SIMBOTIC_TORCH").unwrap() + "/models/motiontransfer/detector.pt"
)
.unwrap()
);
static ref GENERATOR_MODEL: Mutex<tch::CModule> = Mutex::new(
tch::CModule::load(
env::var("SIMBOTIC_TORCH").unwrap() + "/models/motiontransfer/generator.pt"
)
.unwrap()
);
}
// Metadata for the properties
static PROPERTIES: [subclass::Property; 1] = [subclass::Property("source-image", |name| {
glib::ParamSpec::string(
name,
"Source image",
"Source image to be driven",
None,
glib::ParamFlags::READWRITE,
)
})];
pub struct MotionTransfer {
video_info: gst_video::VideoInfo,
source_image: Option<Tensor>, // Tensor[[3, 256, 256], Uint8]
source: Option<Tensor>, // Tensor[[1, 3, 256, 256], Float]
kp_source: Option<(Tensor, Tensor)>,
kp_driving_initial: Option<(Tensor, Tensor)>,
}
impl registry::Registry for MotionTransfer {
const NAME: &'static str = "motiontransfer";
const DEBUG_CATEGORY: &'static str = "motiontransfer";
register_typedata!();
fn properties() -> &'static [glib::subclass::Property<'static>] {
&PROPERTIES
}
}
impl std::default::Default for MotionTransfer {
fn default() -> Self {
let mut caps: gst::Caps = CAPS.lock().unwrap().clone();
caps.fixate();
MotionTransfer {
video_info: gst_video::VideoInfo::from_caps(&caps).unwrap(),
source_image: None,
source: None,
kp_source: None,
kp_driving_initial: None,
}
}
}
impl caps::CapsDef for MotionTransfer {
fn caps_def() -> (Vec<caps::PadCaps>, Vec<caps::PadCaps>) {
let in_caps = caps::PadCaps {
name: "rgb",
caps: CAPS.lock().unwrap().clone(),
};
let out_caps = caps::PadCaps {
name: "transfer",
caps: CAPS.lock().unwrap().clone(),
};
(vec![in_caps], vec![out_caps])
}
}
impl cata::Process for MotionTransfer {
fn process(
&mut self,
inbuf: &Vec<gst::Buffer>,
outbuf: &mut Vec<gst::Buffer>,
) -> Result<(), std::io::Error> {
for (i, buf) in inbuf.iter().enumerate() {
if i < outbuf.len() {
outbuf[i] = buf.clone();
}
}
let mut driven_buf = inbuf[0].copy();
{
let rgb_ref = inbuf[0].as_ref();
let in_frame =
gst_video::VideoFrameRef::from_buffer_ref_readable(rgb_ref, &self.video_info)
.unwrap();
let _in_stride = in_frame.plane_stride()[0] as usize;
let _in_format = in_frame.format();
let _in_width = in_frame.width() as i32;
let _in_height = in_frame.height() as i32;
let in_data = in_frame.plane_data(0).unwrap();
let driven_ref = driven_buf.get_mut().unwrap();
let mut out_frame =
gst_video::VideoFrameRef::from_buffer_ref_writable(driven_ref, &self.video_info)
.unwrap();
let _out_stride = out_frame.plane_stride()[0] as usize;
let _out_format = out_frame.format();
let out_data = out_frame.plane_data_mut(0).unwrap();
let img_slice = unsafe {
std::slice::from_raw_parts(in_data.as_ptr(), (WIDTH * HEIGHT * 3) as usize)
};
let img_bytes = Tensor::of_data_size(
img_slice,
&[HEIGHT as i64, WIDTH as i64, 3],
tch::Kind::Uint8,
)
.to_device(tch::Device::Cuda(0))
.permute(&[2, 0, 1]);
let driving_frame = img_bytes.to_kind(tch::Kind::Float) / 255;
if let Some(source_image) = &self.source_image {
if self.kp_source == None {
let source = source_image.to_kind(tch::Kind::Float) / 255;
let source = source.unsqueeze(0);
self.source = Some(source.copy());
let source = tch::IValue::Tensor(source);
let detector_output = DETECTOR_MODEL
.lock()
.unwrap()
.forward_is(&[source])
.unwrap();
let det_tensors = match &detector_output {
tch::IValue::Tuple(det_tensors) => Some(det_tensors),
_ => None,
}
.unwrap();
match (&det_tensors[0], &det_tensors[1]) {
(tch::IValue::Tensor(value), tch::IValue::Tensor(jacobian)) => {
self.kp_source = Some((value.copy(), jacobian.copy()))
}
_ => (),
};
}
}
if self.kp_driving_initial == None {
let driving_initial = tch::IValue::Tensor(driving_frame.unsqueeze(0));
let detector_output = DETECTOR_MODEL
.lock()
.unwrap()
.forward_is(&[driving_initial])
.unwrap();
let det_tensors = match &detector_output {
tch::IValue::Tuple(det_tensors) => Some(det_tensors),
_ => None,
}
.unwrap();
match (&det_tensors[0], &det_tensors[1]) {
(tch::IValue::Tensor(value), tch::IValue::Tensor(jacobian)) => {
self.kp_driving_initial = Some((value.copy(), jacobian.copy()))
}
_ => (),
};
};
let mut kp_driving: Option<(Tensor, Tensor)> = None;
{
let kp_driving_img = tch::IValue::Tensor(driving_frame.unsqueeze(0));
let detector_output = DETECTOR_MODEL
.lock()
.unwrap()
.forward_is(&[kp_driving_img])
.unwrap();
let det_tensors = match &detector_output {
tch::IValue::Tuple(det_tensors) => Some(det_tensors),
_ => None,
}
.unwrap();
match (&det_tensors[0], &det_tensors[1]) {
(tch::IValue::Tensor(value), tch::IValue::Tensor(jacobian)) => {
kp_driving = Some((value.copy(), jacobian.copy()))
}
_ => (),
};
}
let mut prediction: Option<Tensor> = None;
match (
&self.source,
&self.kp_source,
&kp_driving,
&self.kp_driving_initial,
) {
(
Some(source),
Some((kp_source_value, kp_source_jacobian)),
Some((kp_driving_value, kp_driving_jacobian)),
Some((kp_driving_initial_value, kp_driving_initial_jacobian)),
) => {
let kp_value_diff = kp_driving_value - kp_driving_initial_value;
let kp_driving_value = kp_value_diff + kp_source_value;
let kp_driving_initial_jacobian_inv = kp_driving_initial_jacobian.inverse();
let jacobian_diff =
kp_driving_jacobian.matmul(&kp_driving_initial_jacobian_inv);
let kp_driving_jacobian = jacobian_diff.matmul(&kp_source_jacobian);
let source = tch::IValue::Tensor(source.copy());
let kp_source_value = tch::IValue::Tensor(kp_source_value.copy());
let kp_source_jacobian = tch::IValue::Tensor(kp_source_jacobian.copy());
let kp_driving_value = tch::IValue::Tensor(kp_driving_value);
let kp_driving_jacobian = tch::IValue::Tensor(kp_driving_jacobian);
let gen_pred = GENERATOR_MODEL
.lock()
.unwrap()
.forward_is(&[
source,
kp_source_value,
kp_source_jacobian,
kp_driving_value,
kp_driving_jacobian,
])
.unwrap();
let gen_pred = if let tch::IValue::Tensor(gen_pred) = &gen_pred {
Some(gen_pred)
} else {
None
};
prediction = Some(gen_pred.unwrap().squeeze());
}
_ => (),
};
let driven_out = unsafe {
std::slice::from_raw_parts_mut(out_data.as_mut_ptr(), (WIDTH * HEIGHT * 3) as usize)
};
if let Some(prediction) = prediction {
let prediction = prediction * 255;
prediction
.to_kind(tch::Kind::Uint8)
.permute(&[1, 2, 0])
.copy_data(driven_out, (WIDTH * HEIGHT * 3) as usize);
}
}
outbuf[0] = driven_buf;
Ok(())
}
fn set_property(&mut self, property: &subclass::Property, value: &glib::Value) {
match property {
subclass::Property("source-image", ..) => {
let source_path: String = value.get().expect("source image path").unwrap();
self.source_image = match tch::vision::image::load(source_path) {
Ok(tensor) => Some(tensor.to_device(tch::Device::Cuda(0))),
_ => None,
};
self.kp_source = None;
}
_ => unimplemented!(),
}
}
}