-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprepare_data_bindingDB.py
130 lines (114 loc) · 5.08 KB
/
prepare_data_bindingDB.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# prepare_data_bindingDB.py
#
# This is a data pre-processing file for generating BindingDB dataset in PyTorch format.
#
# Author: Shugang Zhang
# Created: Wednesday, Aug 4th, 2021
# Last update: Wednesday, Aug 4th, 2021
import pandas as pd
import numpy as np
import os
import json,pickle
from collections import OrderedDict
from rdkit import Chem
from rdkit.Chem import MolFromSmiles
import networkx as nx
from utils import *
def atom_features(atom):
return np.array(one_of_k_encoding_unk(atom.GetSymbol(),['C', 'N', 'O', 'S', 'F', 'Si', 'P', 'Cl', 'Br', 'Mg', 'Na','Ca', 'Fe', 'As', 'Al', 'I', 'B', 'V', 'K', 'Tl', 'Yb','Sb', 'Sn', 'Ag', 'Pd', 'Co', 'Se', 'Ti', 'Zn', 'H','Li', 'Ge', 'Cu', 'Au', 'Ni', 'Cd', 'In', 'Mn', 'Zr','Cr', 'Pt', 'Hg', 'Pb', 'Unknown']) +
one_of_k_encoding(atom.GetDegree(), [0, 1, 2, 3, 4, 5, 6,7,8,9,10]) +
one_of_k_encoding_unk(atom.GetTotalNumHs(), [0, 1, 2, 3, 4, 5, 6,7,8,9,10]) +
one_of_k_encoding_unk(atom.GetImplicitValence(), [0, 1, 2, 3, 4, 5, 6,7,8,9,10]) +
[atom.GetIsAromatic()])
def one_of_k_encoding(x, allowable_set):
if x not in allowable_set:
raise Exception("input {0} not in allowable set{1}:".format(x, allowable_set))
return list(map(lambda s: x == s, allowable_set))
def one_of_k_encoding_unk(x, allowable_set):
"""Maps inputs not in the allowable set to the last element."""
if x not in allowable_set:
x = allowable_set[-1]
return list(map(lambda s: x == s, allowable_set))
def smile_to_graph(smile):
mol = Chem.MolFromSmiles(smile)
if (mol is None):
print("bad smile:", smile)
else:
# 1.num of atoms
num_atoms = mol.GetNumAtoms()
# 2.features
features = []
for atom in mol.GetAtoms():
feature = atom_features(atom)
features.append( feature / sum(feature) )
# 3.edges
edges = []
for bond in mol.GetBonds():
edges.append([bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()])
g = nx.Graph(edges).to_directed()
edge_index = []
for e1, e2 in g.edges:
edge_index.append([e1, e2])
return num_atoms, features, edge_index
def seq_cat(prot):
x = np.zeros(max_seq_len)
for i, ch in enumerate(prot[:max_seq_len]):
x[i] = seq_dict[ch]
return x
# from DeepDTA data
all_prots = []
datasets = ['BindingDB']
for dataset in datasets:
print('convert data from DeepDTA for ', dataset)
fpath = 'data/' + dataset + '/'
train_data = pd.read_table(fpath + "train.txt", sep=' ', header=None) # len=5
valid_data = pd.read_table(fpath + "dev.txt", sep=' ', header=None)
test_data = pd.read_table(fpath + "test.txt", sep=' ', header=None)
# ligands = json.load(open(fpath + "ligands_can.txt"), object_pairs_hook=OrderedDict) # davis len=68
# proteins = json.load(open(fpath + "proteins.txt"), object_pairs_hook=OrderedDict) # davis len=442
# affinity = pickle.load(open(fpath + "Y","rb"), encoding='latin1') # davis len=68
drugs = []
prots = []
print('\ndataset:', dataset)
print('train_fold:', len(train_data))
print('valid_fold:', len(valid_data))
print('test_fold:', len(test_data))
all_prots += list(set(prots))
seq_voc = "ABCDEFGHIKLMNOPQRSTUVWXYZ"
seq_dict = {v:(i+1) for i,v in enumerate(seq_voc)} # encode alphabet from 1
seq_dict_len = len(seq_dict)
max_seq_len = 1000
# 2.create graph for all SMILES
print("\nCreating graph for all SMILES...")
compound_iso_smiles = []
for dt_name in ['BindingDB']:
opts = ['train', 'dev', 'test']
for opt in opts:
df = pd.read_table('data/' + dt_name + '/' + opt + '.txt', sep=' ', header=None)
compound_iso_smiles += list(df[0]) # the first column is drug SMILES
compound_iso_smiles = set(compound_iso_smiles) # function set() can remove redundant automatically
smile_graph = {}
for smile in compound_iso_smiles:
g = smile_to_graph(smile)
smile_graph[smile] = g
print("Finished.")
datasets = ['BindingDB']
# convert to PyTorch data format
print("\nConvert to pytorch data format...")
for dataset in datasets:
opts = ['train', 'dev', 'test']
for opt in opts:
df = pd.read_table('data/' + dt_name + '/' + opt + '.txt', sep=' ', header=None)
processed_data = 'data/processed/' + dataset + '_' + opt + '.pt'
if not os.path.isfile(processed_data): # if not exists
df = pd.read_table('data/' + dataset + '/' + opt + '.txt', sep=' ', header=None)
drugs, prots, Y = list(df[0]), list(df[1]), list(df[2])
XT = [seq_cat(t) for t in prots]
drugs, prots, Y = np.asarray(drugs), np.asarray(XT), np.asarray(Y)
# make data PyTorch Geometric ready
print('preparing ', dataset + '_' + opt + '.pt in pytorch format!')
valid_data = TestbedDataset(root='data', dataset=dataset + '_' + opt,
xd=drugs, xt=prots, y=Y, smile_graph=smile_graph)
print(processed_data, 'created successfully.')
else:
print(processed_data, 'are already created.')