-
Notifications
You must be signed in to change notification settings - Fork 2
/
data.py
278 lines (237 loc) · 7.53 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
"""
Original source code for manipulating datasets was taken from the official
DECAF repository: https://github.com/vanderschaarlab/DECAF
We made small changes and added preprocessing.
"""
from pathlib import Path
from typing import Any
import numpy as np
import pandas as pd
import pytorch_lightning as pl
import torch
from sklearn.preprocessing import MinMaxScaler, LabelEncoder
from torch.utils.data import DataLoader
import logger as log
class Dataset(torch.utils.data.Dataset):
def __init__(self, data: list) -> None:
data = np.array(data, dtype="float32")
self.x = torch.from_numpy(data)
self.n_samples = self.x.shape[0]
log.info("***** DATA ****")
log.info(f"n_samples = {self.n_samples}")
def __getitem__(self, index: int) -> Any:
return self.x[index]
def __len__(self) -> int:
return self.n_samples
class DataModule(pl.LightningDataModule):
def __init__(
self,
data: list,
data_dir: Path = Path.cwd(),
batch_size: int = 64,
num_workers: int = 0,
) -> None:
super().__init__()
self.data_dir = data_dir
self.batch_size = batch_size
self.num_workers = num_workers
self.dataset = Dataset(data)
self.dims = self.dataset.x.shape[1:]
def train_dataloader(self) -> DataLoader:
return DataLoader(
self.dataset,
batch_size=self.batch_size,
shuffle=True,
num_workers=self.num_workers,
)
def val_dataloader(self) -> DataLoader:
return DataLoader(
self.data_val, batch_size=self.batch_size, num_workers=self.num_workers
)
def test_dataloader(self) -> DataLoader:
return DataLoader(
self.data_test, batch_size=self.batch_size, num_workers=self.num_workers
)
def load_adult() -> pd.DataFrame:
"""Load the Adult dataset in a pandas dataframe"""
path = "https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data"
test_path = "https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test"
names = [
"age",
"workclass",
"fnlwgt",
"education",
"education-num",
"marital-status",
"occupation",
"relationship",
"race",
"sex",
"capital-gain",
"capital-loss",
"hours-per-week",
"native-country",
"income",
]
train_df = pd.read_csv(path, names=names, index_col=False)
test_df = pd.read_csv(test_path, names=names, index_col=False)[1:]
df = pd.concat([train_df, test_df])
df = df.applymap(lambda x: x.strip() if type(x) is str else x)
for col in df:
if df[col].dtype == "object":
df = df[df[col] != "?"]
df["income"].replace({'<=50K.': '<=50K', '>50K.': '>50K'}, inplace=True)
return df
def preprocess_adult(dataset: pd.DataFrame) -> pd.DataFrame:
"""Preprocess adult data set."""
replace = [
[
"Private",
"Self-emp-not-inc",
"Self-emp-inc",
"Federal-gov",
"Local-gov",
"State-gov",
"Without-pay",
"Never-worked",
],
[
"Bachelors",
"Some-college",
"11th",
"HS-grad",
"Prof-school",
"Assoc-acdm",
"Assoc-voc",
"9th",
"7th-8th",
"12th",
"Masters",
"1st-4th",
"10th",
"Doctorate",
"5th-6th",
"Preschool",
],
[
"Married-civ-spouse",
"Divorced",
"Never-married",
"Separated",
"Widowed",
"Married-spouse-absent",
"Married-AF-spouse",
],
[
"Tech-support",
"Craft-repair",
"Other-service",
"Sales",
"Exec-managerial",
"Prof-specialty",
"Handlers-cleaners",
"Machine-op-inspct",
"Adm-clerical",
"Farming-fishing",
"Transport-moving",
"Priv-house-serv",
"Protective-serv",
"Armed-Forces",
],
[
"Wife",
"Own-child",
"Husband",
"Not-in-family",
"Other-relative",
"Unmarried",
],
["White", "Asian-Pac-Islander", "Amer-Indian-Eskimo", "Other", "Black"],
["Female", "Male"],
[
"United-States",
"Cambodia",
"England",
"Puerto-Rico",
"Canada",
"Germany",
"Outlying-US(Guam-USVI-etc)",
"India",
"Japan",
"Greece",
"South",
"China",
"Cuba",
"Iran",
"Honduras",
"Philippines",
"Italy",
"Poland",
"Jamaica",
"Vietnam",
"Mexico",
"Portugal",
"Ireland",
"France",
"Dominican-Republic",
"Laos",
"Ecuador",
"Taiwan",
"Haiti",
"Columbia",
"Hungary",
"Guatemala",
"Nicaragua",
"Scotland",
"Thailand",
"Yugoslavia",
"El-Salvador",
"Trinadad&Tobago",
"Peru",
"Hong",
"Holand-Netherlands",
],
[">50K", "<=50K"],
]
df = dataset
for row in replace:
df = df.replace(row, range(len(row)))
df = pd.DataFrame(MinMaxScaler().fit_transform(df),
index=df.index, columns=df.columns)
return df
def load_credit() -> pd.DataFrame:
"""Load the Credit dataset."""
path = "https://archive.ics.uci.edu/ml/machine-learning-databases/credit-screening/crx.data"
names = ['male', 'age', 'debt', 'married', 'bankcustomer', 'educationlevel',
'ethnicity', 'yearsemployed', 'priordefault', 'employed',
'creditscore', 'driverslicense', 'citizen', 'zip', 'income',
'approved']
df = pd.read_csv(path, names=names, index_col=False)
df.reset_index(drop=True, inplace=True)
df = df.dropna(how='all')
df = df[df.age != '?']
return df
def preprocess_credit(dataset: pd.DataFrame) -> pd.DataFrame:
cat_features = ['male', 'married','bankcustomer', 'educationlevel',
'ethnicity','priordefault', 'employed', 'driverslicense',
'citizen', 'zip', 'approved']
for feat in cat_features:
dataset[feat] = LabelEncoder().fit_transform(dataset[feat])
dataset['age'] = pd.to_numeric(dataset['age'], errors='coerce')
# binarise protected variable
dataset.loc[dataset['ethnicity'] <= 4, 'ethnicity'] = 0
dataset.loc[dataset['ethnicity'] > 4, 'ethnicity']= 1
dataset.loc[dataset['ethnicity'] == 1 , 'employed'] = 1
dataset[dataset.columns] = MinMaxScaler().fit_transform(dataset)
return dataset
def inject_synth_bias(dataset: pd.DataFrame, bias=0.2) -> pd.DataFrame:
"""Inject synthetic bias into a dataset."""
biased_dataset = dataset.copy()
biased_dataset.loc[biased_dataset['ethnicity'] > 0.5, 'approved'] = np.logical_and(
biased_dataset.loc[biased_dataset['ethnicity'] > 0.5, 'approved'].values,
np.random.binomial(
1, bias,
len(biased_dataset.loc[biased_dataset['ethnicity'] > 0.5, 'approved'])
)
).astype(int)
return biased_dataset