-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1_train_SDF.py
79 lines (63 loc) · 3.06 KB
/
1_train_SDF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import time
import torch
from torch.utils.data import DataLoader
from lightning.pytorch import Trainer, seed_everything
from lightning.pytorch.loggers import WandbLogger
from lightning.pytorch.callbacks import ModelCheckpoint, TQDMProgressBar, ModelSummary
from utils.mylogging import Log
from utils import parse_config_from_args
from pathlib import Path
from model.SDFAutoEncoder import SDFAutoEncoder
from model.SDFAutoEncoder.dataloader import GenSDFDataset
import os
# Set WANDB_CACHE_DIR to a local directory to avoid no space left error
# cmd clean up the cache: wandb artifact cache cleanup 1GB
os.environ['WANDB_CACHE_DIR'] = (Path() / 'wandb/cache').resolve().as_posix()
os.environ['WANDB_DATA_DIR'] = (Path() / 'wandb/data').resolve().as_posix()
import wandb
if __name__ == '__main__':
torch.set_float32_matmul_precision('high')
run_name = time.strftime("%m-%d-%I%p-%M-%S")
config = parse_config_from_args()
seed_everything(config['seed'])
wandb_run = wandb.init(
config=config, project=config['wandb']['project'],
entity=config['wandb']['entity'], name=run_name,
)
wandb_logger = WandbLogger()
if config['pretrained_model']:
model = SDFAutoEncoder.load_from_checkpoint(config['pretrained_model'])
else:
model = SDFAutoEncoder(config)
# Configure data module
d_configs = config['dataset_n_dataloader']
dataloader = [
DataLoader(GenSDFDataset(dataset_dir=Path(d_configs['dataset_dir']), train=is_train,
samples_per_mesh=d_configs['samples_per_mesh'],
pc_size=d_configs['pc_size'],
uniform_sample_ratio=d_configs['uniform_sample_ratio']),
num_workers=d_configs['n_workers'], batch_size=d_configs['batch_size'],
drop_last=True, shuffle=is_train, pin_memory=True, persistent_workers=True)
for is_train in [None, None] # do not split validation or train dataset.
]
# Configure save checkpoint callback
checkpoint_callback = ModelCheckpoint(
save_top_k=-1,
every_n_train_steps=config['checkpoint']['freq'],
dirpath=config['checkpoint']['path'] + '/' + run_name,
filename="sdf_{epoch:04d}-{loss:.5f}",
)
# Configure trainer
optional_kw_args = dict()
optional_kw_args['logger'] = wandb_logger
trainer = Trainer(devices=config['devices'], accelerator=config["accelerator"],
benchmark=True,
callbacks=[ModelSummary(max_depth=1), checkpoint_callback, TQDMProgressBar()],
check_val_every_n_epoch=config['evaluation']['freq_epoch'],
default_root_dir=config['default_root_dir'],
max_epochs=config['num_epochs'], profiler="simple",
log_every_n_steps=5,
**optional_kw_args)
Log.info("Start training...")
trainer.fit(model=model, train_dataloaders=dataloader[0],
val_dataloaders=dataloader[1])