-
Notifications
You must be signed in to change notification settings - Fork 15
/
E2FAR.py
253 lines (192 loc) · 9.8 KB
/
E2FAR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
"""
Implementation of End-to-end 3D Face Reconstruction with Deep Neural Network
"""
import argparse
import scipy.io as sio
import cv2
import pandas as pd
import numpy as np
import math
import mxnet as mx
from mxnet import nd, autograd, gluon
from utils import *
from model import E2FAR
def enlarge_bbox(x, y, w, h, enlarge_factor=1.2):
x = x - (enlarge_factor - 1) * w
y = y - (enlarge_factor - 1) * h
w = w * (2 * enlarge_factor - 1)
h = h * (2 * enlarge_factor - 1)
return int(x), int(y), int(w), int(h)
class SupervisedDataset(gluon.data.Dataset):
def __init__(self, file_path, is_train=True, img_size=180, enlarge_factor=0.9):
self.data_frame = pd.read_csv(file_path)
self.is_train = is_train
self.img_size = img_size
self.enlarge_factor = enlarge_factor
def __len__(self):
return len(self.data_frame)
def __getitem__(self, idx):
img_path = self.data_frame.iloc[idx, 0]
img = cv2.imread(img_path, 1)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
x, y, w, h = self.data_frame.iloc[idx, 1:5]
l, t, ww, hh = enlarge_bbox(x, y, w, h, self.enlarge_factor)
r, b = l + ww, t + hh
img = img[t: b, l:r, :]
img = cv2.resize(img, (self.img_size, self.img_size))
img = img.astype(np.float32) - 127.5
img = nd.transpose(nd.array(img), (2, 0, 1))
label_path = img_path.replace('.jpg', '.mat')
label = sio.loadmat(label_path)
params_shape = label['Shape_Para'].astype(np.float32).ravel()
params_exp = label['Exp_Para'].astype(np.float32).ravel()
return img, params_shape, params_exp
def multi_factor_scheduler(lr_step_epochs, num_samples, batch_size, lr_factor, start_epoch):
num_samples = num_samples
epoch_size = int(math.ceil(float(num_samples) / batch_size))
step_epochs = [int(l) - start_epoch for l in lr_step_epochs.split(',')]
steps = [epoch_size * x for x in step_epochs]
lr_scheduler = mx.lr_scheduler.MultiFactorScheduler(steps, factor=lr_factor)
return lr_scheduler
def initialize_inference(inference, pretrained, start_epoch):
if pretrained:
print('Loading the pretrained model')
vggface_weights = nd.load('ckpt/VGG-FACE/VGG_FACE-0000.params')
# change the name
checkpoint = {}
vgg_face_layers = [2, 2, 3, 3, 3]
for k, v in vggface_weights.items():
if 'conv' in k:
ind1, ind2, sub_name = k.split('_')
ind1 = int(ind1.replace('arg:conv', '')) - 1
ind2 = int(ind2[-1]) - 1
ind = sum(vgg_face_layers[:ind1]) + ind2
key = inference.name + '_conv' + str(ind) + '_' + sub_name
checkpoint[key] = v
# load the weights
for k in inference.collect_params().keys():
if k in checkpoint:
inference.collect_params()[k]._load_init(checkpoint[k], ctx)
print('Loaded %s weights from checkpoints' % k)
else:
inference.collect_params()[k].initialize(ctx=ctx)
print('Initialize %s weights' % k)
print('Done')
elif start_epoch > 0:
print('Loading the weights from [%d] epoch' % start_epoch)
inference.load_params(os.path.join(args.ckpt_dir, args.prefix, '%s-%d.params' % (args.prefix, start_epoch)), ctx)
else:
inference.collect_params().initialize(ctx=ctx)
return inference
class ProjectionL2Loss(gluon.loss.Loss):
def __init__(self, weights, weight=1, batch_axis=0, **kwargs):
super(ProjectionL2Loss, self).__init__(weight, batch_axis, **kwargs)
self._weights = weights
self._batch_axis = batch_axis
def hybrid_forward(self, F, pred, label):
pred = F.dot(pred, self._weights)
label = F.dot(label, self._weights)
loss = F.square(pred - label)
return F.mean(loss, axis=self._batch_axis, exclude=True)
def train():
print('Start to train')
logger = add_logger(args.log_dir, args.prefix, remove_previous_log=args.start_epoch == 0)
check_ckpt(args.ckpt_dir, args.prefix)
model3d = sio.loadmat(args.model3d)
shape_pc = nd.array(model3d['shapePC']).transpose().as_in_context(ctx)
exp_pc = nd.array(model3d['expPC']).transpose().as_in_context(ctx)
trainset = SupervisedDataset(args.train_list)
valset = SupervisedDataset(args.val_list)
train_loader = gluon.data.DataLoader(trainset, batch_size=args.batch_size, shuffle=True)
val_loader = gluon.data.DataLoader(valset, batch_size=args.batch_size, shuffle=False)
inference = E2FAR(freeze=args.freeze)
# initialize
initialize_inference(inference, args.pretrained, args.start_epoch)
lr_scheduler = multi_factor_scheduler(args.lr_steps, len(trainset), args.batch_size, args.lr_factor, args.start_epoch)
trainer = gluon.Trainer(inference.collect_params(), optimizer='adam',
optimizer_params={'learning_rate': args.lr, 'wd': args.wd, 'lr_scheduler': lr_scheduler})
criterion_shape = ProjectionL2Loss(shape_pc)
criterion_exp = ProjectionL2Loss(exp_pc)
metric_shape, metric_exp = mx.metric.Loss('shape-loss'), mx.metric.Loss('exp-loss')
for cur_epoch in range(args.start_epoch + 1, args.epochs + 1):
metric_shape.reset()
metric_exp.reset()
for i, batch in enumerate(train_loader):
data = batch[0].as_in_context(ctx)
gt_shape = batch[1].as_in_context(ctx)
gt_exp = batch[2].as_in_context(ctx)
with autograd.record():
preds_shape, preds_exp = inference(data)
loss_shape = criterion_shape(preds_shape, gt_shape)
loss_exp = criterion_exp(preds_exp, gt_exp)
loss = loss_shape + 5 * loss_exp
loss.backward()
trainer.step(data.shape[0])
metric_shape.update(None, preds=loss_shape)
metric_exp.update(None, preds=loss_exp)
if i % args.log_interval == 0 and i > 0:
logger.info('Epoch [%d] Batch [%d]: shape loss=%f, exp loss=%f, total loss=%f' %
(cur_epoch, i, metric_shape.get()[1], metric_exp.get()[1],
0.001 * metric_shape.get()[1] + metric_exp.get()[1]))
logger.info('Epoch [%d]: train-shape-loss=%f' % (cur_epoch, metric_shape.get()[1]))
logger.info('Epoch [%d]: train-exp-loss=%f' % (cur_epoch, metric_exp.get()[1]))
inference.save_params(os.path.join(args.ckpt_dir, args.prefix, '%s-%d.params' % (args.prefix, cur_epoch)))
metric_shape.reset()
metric_exp.reset()
for i, batch in enumerate(val_loader):
data = batch[0].as_in_context(ctx)
gt_shape = batch[1].as_in_context(ctx)
gt_exp = batch[2].as_in_context(ctx)
preds_shape, preds_exp = inference(data)
loss_shape = criterion_shape(preds_shape, gt_shape)
loss_exp = criterion_exp(preds_exp, gt_exp)
metric_shape.update(None, preds=loss_shape)
metric_exp.update(None, preds=loss_exp)
logger.info('Epoch [%d]: val-shape-loss=%f' % (cur_epoch, metric_shape.get()[1]))
logger.info('Epoch [%d]: val-exp-loss=%f' % (cur_epoch, metric_exp.get()[1]))
print('Done')
def test():
testset = SupervisedDataset(args.test_list)
test_loader = gluon.data.DataLoader(testset, batch_size=args.batch_size, shuffle=True)
inference = E2FAR(freeze=args.freeze)
# initialize
initialize_inference(inference, args.pretrained, args.start_epoch)
for i, batch in enumerate(test_loader):
data = batch[0].as_in_context(ctx)
preds_shape, preds_exp = inference(data)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# log
parser.add_argument('--ckpt_dir', default='ckpt', help='checkpoint directory')
parser.add_argument('--log_dir', default='logs', help='log directory')
parser.add_argument('--prefix', default='E2FAR', type=str, help='prefix')
parser.add_argument('--arch', default='vgg16', type=str, help='base architecture')
# train
parser.add_argument('--model3d', default='', type=str, help='3D model')
parser.add_argument('--train_list', default='', type=str, help='wider train record')
parser.add_argument('--gpu', default=0, type=int, help='gpus')
parser.add_argument('--lr', default=0.0001, type=float, help='learning rate')
parser.add_argument('--wd', default=0.0005, type=float, help='weight decay')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--epochs', default=100, type=int, help='total epochs')
parser.add_argument('--batch_size', default=32, type=int, help='batch size')
parser.add_argument('--pretrained', action='store_true', help='pre-trained model')
parser.add_argument('--freeze', action='store_true', help='freeze parameters')
parser.add_argument('--start_epoch', default=0, type=int, help='start epoch')
parser.add_argument('--lr_steps', default='80, 160', help='learning decay steps')
parser.add_argument('--lr_factor', default=0.1, type=float, help='learning rate decrease factor')
parser.add_argument('--log_interval', default=20, type=int, help='log interval')
parser.add_argument('--training', dest='training', action='store_true', help='training flag')
# validate
parser.add_argument('--val_list', default='', type=str, help='validation record')
# test
parser.add_argument('--testing', dest='training', action='store_false', help='testing flag')
parser.add_argument('--test_list', default='', type=str, help='test record')
parser.set_defaults(training=True)
args = parser.parse_args()
ctx = mx.gpu(args.gpu) if args.gpu >= 0 else mx.cpu()
data_shape = tuple(map(int, args.data_shape.split(',')))
if args.training:
train()
else:
test()