-
Notifications
You must be signed in to change notification settings - Fork 10
/
mobileNetV3.py
370 lines (321 loc) · 15.1 KB
/
mobileNetV3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
# -*- coding: UTF-8 -*-
'''
MobileNetV3 From <Searching for MobileNetV3>, arXiv:1905.02244.
Ref: https://github.com/d-li14/mobilenetv3.pytorch/blob/master/mobilenetv3.py
https://github.com/kuan-wang/pytorch-mobilenet-v3/blob/master/mobilenetv3.py
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from collections import OrderedDict
def _ensure_divisible(number, divisor, min_value=None):
'''
Ensure that 'number' can be 'divisor' divisible
Reference from original tensorflow repo:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
'''
if min_value is None:
min_value = divisor
new_num = max(min_value, int(number + divisor / 2) // divisor * divisor)
if new_num < 0.9 * number:
new_num += divisor
return new_num
class H_sigmoid(nn.Module):
'''
hard sigmoid
'''
def __init__(self, inplace=True):
super(H_sigmoid, self).__init__()
self.inplace = inplace
def forward(self, x):
return F.relu6(x + 3, inplace=self.inplace) / 6
class H_swish(nn.Module):
'''
hard swish
'''
def __init__(self, inplace=True):
super(H_swish, self).__init__()
self.inplace = inplace
def forward(self, x):
return x * F.relu6(x + 3, inplace=self.inplace) / 6
class SEModule(nn.Module):
'''
SE Module
Ref: https://github.com/moskomule/senet.pytorch/blob/master/senet/se_module.py
'''
def __init__(self, in_channels_num, reduction_ratio=4):
super(SEModule, self).__init__()
if in_channels_num % reduction_ratio != 0:
raise ValueError('in_channels_num must be divisible by reduction_ratio(default = 4)')
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(in_channels_num, in_channels_num // reduction_ratio, bias=False),
nn.ReLU(inplace=True),
nn.Linear(in_channels_num // reduction_ratio, in_channels_num, bias=False),
H_sigmoid()
)
def forward(self, x):
batch_size, channel_num, _, _ = x.size()
y = self.avg_pool(x).view(batch_size, channel_num)
y = self.fc(y).view(batch_size, channel_num, 1, 1)
return x * y
class Bottleneck(nn.Module):
'''
The basic unit of MobileNetV3
'''
def __init__(self, in_channels_num, exp_size, out_channels_num, kernel_size, stride, use_SE, NL, BN_momentum):
'''
use_SE: True or False -- use SE Module or not
NL: nonlinearity, 'RE' or 'HS'
'''
super(Bottleneck, self).__init__()
assert stride in [1, 2]
NL = NL.upper()
assert NL in ['RE', 'HS']
use_HS = NL == 'HS'
# Whether to use residual structure or not
self.use_residual = (stride == 1 and in_channels_num == out_channels_num)
if exp_size == in_channels_num:
# Without expansion, the first depthwise convolution is omitted
self.conv1 = nn.Sequential(
# Depthwise Convolution
nn.Conv2d(in_channels=in_channels_num, out_channels=exp_size, kernel_size=kernel_size, stride=stride, padding=(kernel_size-1)//2, groups=in_channels_num, bias=False),
nn.BatchNorm2d(num_features=exp_size, momentum=BN_momentum),
# SE Module
SEModule(exp_size) if use_SE else nn.Sequential(),
H_swish() if use_HS else nn.ReLU(inplace=True))
self.conv2 = nn.Sequential(
# Linear Pointwise Convolution
nn.Conv2d(in_channels=exp_size, out_channels=out_channels_num, kernel_size=1, stride=1, padding=0, bias=False),
#nn.BatchNorm2d(num_features=out_channels_num, momentum=BN_momentum)
nn.Sequential(OrderedDict([('lastBN', nn.BatchNorm2d(num_features=out_channels_num))])) if self.use_residual else
nn.BatchNorm2d(num_features=out_channels_num, momentum=BN_momentum)
)
else:
# With expansion
self.conv1 = nn.Sequential(
# Pointwise Convolution for expansion
nn.Conv2d(in_channels=in_channels_num, out_channels=exp_size, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(num_features=exp_size, momentum=BN_momentum),
H_swish() if use_HS else nn.ReLU(inplace=True))
self.conv2 = nn.Sequential(
# Depthwise Convolution
nn.Conv2d(in_channels=exp_size, out_channels=exp_size, kernel_size=kernel_size, stride=stride, padding=(kernel_size-1)//2, groups=exp_size, bias=False),
nn.BatchNorm2d(num_features=exp_size, momentum=BN_momentum),
# SE Module
SEModule(exp_size) if use_SE else nn.Sequential(),
H_swish() if use_HS else nn.ReLU(inplace=True),
# Linear Pointwise Convolution
nn.Conv2d(in_channels=exp_size, out_channels=out_channels_num, kernel_size=1, stride=1, padding=0, bias=False),
#nn.BatchNorm2d(num_features=out_channels_num, momentum=BN_momentum)
nn.Sequential(OrderedDict([('lastBN', nn.BatchNorm2d(num_features=out_channels_num))])) if self.use_residual else
nn.BatchNorm2d(num_features=out_channels_num, momentum=BN_momentum)
)
def forward(self, x, expand=False):
out1 = self.conv1(x)
out = self.conv2(out1)
if self.use_residual:
out = out + x
if expand:
return out, out1
else:
return out
class MobileNetV3(nn.Module):
'''
'''
def __init__(self, mode='small', classes_num=1000, input_size=224, width_multiplier=1.0, dropout=0.2, BN_momentum=0.1, zero_gamma=False):
'''
configs: setting of the model
mode: type of the model, 'large' or 'small'
'''
super(MobileNetV3, self).__init__()
mode = mode.lower()
assert mode in ['large', 'small']
s = 2
if input_size == 32 or input_size == 56:
# using cifar-10, cifar-100 or Tiny-ImageNet
s = 1
# setting of the model
if mode == 'large':
# Configuration of a MobileNetV3-Large Model
configs = [
#kernel_size, exp_size, out_channels_num, use_SE, NL, stride
[3, 16, 16, False, 'RE', 1],
[3, 64, 24, False, 'RE', s],
[3, 72, 24, False, 'RE', 1],
[5, 72, 40, True, 'RE', 2],
[5, 120, 40, True, 'RE', 1],
[5, 120, 40, True, 'RE', 1],
[3, 240, 80, False, 'HS', 2],
[3, 200, 80, False, 'HS', 1],
[3, 184, 80, False, 'HS', 1],
[3, 184, 80, False, 'HS', 1],
[3, 480, 112, True, 'HS', 1],
[3, 672, 112, True, 'HS', 1],
[5, 672, 160, True, 'HS', 2],
[5, 960, 160, True, 'HS', 1],
[5, 960, 160, True, 'HS', 1]
]
elif mode == 'small':
# Configuration of a MobileNetV3-Small Model
configs = [
#kernel_size, exp_size, out_channels_num, use_SE, NL, stride
[3, 16, 16, True, 'RE', s],
[3, 72, 24, False, 'RE', 2],
[3, 88, 24, False, 'RE', 1],
[5, 96, 40, True, 'HS', 2],
[5, 240, 40, True, 'HS', 1],
[5, 240, 40, True, 'HS', 1],
[5, 120, 48, True, 'HS', 1],
[5, 144, 48, True, 'HS', 1],
[5, 288, 96, True, 'HS', 2],
[5, 576, 96, True, 'HS', 1],
[5, 576, 96, True, 'HS', 1]
]
first_channels_num = 16
# last_channels_num = 1280
# according to https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v3.py
# if small -- 1024, if large -- 1280
last_channels_num = 1280 if mode == 'large' else 1024
divisor = 8
########################################################################################################################
# feature extraction part
# input layer
input_channels_num = _ensure_divisible(first_channels_num * width_multiplier, divisor)
last_channels_num = _ensure_divisible(last_channels_num * width_multiplier, divisor) if width_multiplier > 1 else last_channels_num
feature_extraction_layers = []
first_layer = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=input_channels_num, kernel_size=3, stride=s, padding=1, bias=False),
nn.BatchNorm2d(num_features=input_channels_num, momentum=BN_momentum),
H_swish()
)
feature_extraction_layers.append(first_layer)
# Overlay of multiple bottleneck structures
for kernel_size, exp_size, out_channels_num, use_SE, NL, stride in configs:
output_channels_num = _ensure_divisible(out_channels_num * width_multiplier, divisor)
exp_size = _ensure_divisible(exp_size * width_multiplier, divisor)
feature_extraction_layers.append(Bottleneck(input_channels_num, exp_size, output_channels_num, kernel_size, stride, use_SE, NL, BN_momentum))
input_channels_num = output_channels_num
# the last stage
last_stage_channels_num = _ensure_divisible(exp_size * width_multiplier, divisor)
last_stage_layer1 = nn.Sequential(
nn.Conv2d(in_channels=input_channels_num, out_channels=last_stage_channels_num, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(num_features=last_stage_channels_num, momentum=BN_momentum),
H_swish()
)
feature_extraction_layers.append(last_stage_layer1)
self.featureList = nn.ModuleList(feature_extraction_layers)
# SE Module
# remove the last SE Module according to https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v3.py
# feature_extraction_layers.append(SEModule(last_stage_channels_num) if mode == 'small' else nn.Sequential())
last_stage = []
last_stage.append(nn.AdaptiveAvgPool2d(1))
last_stage.append(nn.Conv2d(in_channels=last_stage_channels_num, out_channels=last_channels_num, kernel_size=1, stride=1, padding=0, bias=False))
last_stage.append(H_swish())
self.last_stage_layers = nn.Sequential(*last_stage)
########################################################################################################################
# Classification part
self.classifier = nn.Sequential(
nn.Dropout(p=dropout),
nn.Linear(last_channels_num, classes_num)
)
'''
self.extras = nn.ModuleList([
InvertedResidual(576, 512, 2, 0.2),
InvertedResidual(512, 256, 2, 0.25),
InvertedResidual(256, 256, 2, 0.5),
InvertedResidual(256, 64, 2, 0.25)
])
'''
########################################################################################################################
# Initialize the weights
self._initialize_weights(zero_gamma)
def forward(self, x):
for i in range(9):
x = self.featureList[i](x)
x = self.featureList[9](x)
for i in range(10, len(self.featureList)):
x = self.featureList[i](x)
x = self.last_stage_layers(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
def _initialize_weights(self, zero_gamma):
'''
Initialize the weights
'''
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, std=0.001)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
if zero_gamma:
for m in self.modules():
if hasattr(m, 'lastBN'):
nn.init.constant_(m.lastBN.weight, 0.0)
if __name__ == "__main__":
width_multiplier = 1
from torchsummaryX import summary
# cifar10
#model_large = MobileNetV3(mode='large', classes_num=10, input_size=32, width_multiplier=width_multiplier)
#model_large.eval()
'''
model_small = MobileNetV3(mode='small', classes_num=10, input_size=32, width_multiplier=width_multiplier)
model_small.eval()
summary(model_small, torch.zeros((1, 3, 32, 32)))
print('MobileNetV3-Small-%.2f cifar10-summaryX\n' % width_multiplier)
'''
'''
# cifar100
model_large = MobileNetV3(mode='large', classes_num=100, input_size=32, width_multiplier=width_multiplier)
model_large.eval()
model_small = MobileNetV3(mode='small', classes_num=100, input_size=32, width_multiplier=width_multiplier)
model_small.eval()
input = torch.randn(1, 3, 32, 32)
from thop import profile
FLOPs_large, params_large = profile(model_large, inputs=(input,))
FLOPs_small, params_small = profile(model_small, inputs=(input,))
print('\nOn cifar100 using thop')
print('MobileNetV3-Large-%.2f:' % width_multiplier)
print('Total flops: %.4fM' % (FLOPs_large/1000000.0))
print('Total params: %.4fM' % (params_large/1000000.0))
print()
print('MobileNetV3-Small-%.2f:' % width_multiplier)
print('Total flops: %.4fM' % (FLOPs_small/1000000.0))
print('Total params: %.4fM' % (params_small/1000000.0))
summary(model_large, torch.zeros((1, 3, 32, 32)))
print('MobileNetV3-Large-%.2f cifar100-summaryX\n' % width_multiplier)
summary(model_small, torch.zeros((1, 3, 32, 32)))
print('MobileNetV3-Small-%.2f cifar100-summaryX\n' % width_multiplier)
# ImageNet
model_large = MobileNetV3(mode='large', classes_num=1000, input_size=224, width_multiplier=width_multiplier)
model_large.eval()
model_small = MobileNetV3(mode='small', classes_num=1000, input_size=224, width_multiplier=width_multiplier)
model_small.eval()
input = torch.randn(1, 3, 224, 224)
from thop import profile
FLOPs_large, params_large = profile(model_large, inputs=(input,))
FLOPs_small, params_small = profile(model_small, inputs=(input,))
print('\nOn ImageNet using thop')
print('MobileNetV3-Large-%.2f:' % width_multiplier)
print('Total flops: %.4fM' % (FLOPs_large/1000000.0))
print('Total params: %.4fM' % (params_large/1000000.0))
print()
print('MobileNetV3-Small-%.2f:' % width_multiplier)
print('Total flops: %.4fM' % (FLOPs_small/1000000.0))
print('Total params: %.4fM' % (params_small/1000000.0))
'''
'''
summary(model_large, torch.zeros((1, 3, 224, 224)))
print('MobileNetV3-Large-%.2f ImageNet-summaryX\n' % width_multiplier)
summary(model_small, torch.zeros((1, 3, 224, 224)))
print('MobileNetV3-Small-%.2f ImageNet-summaryX\n' % width_multiplier)
'''