-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain.py
116 lines (100 loc) · 4.43 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import torch
import data as Data
import model as Model
import argparse
import logging
import core.logger as Logger
import core.metrics as Metrics
from core.wandb_logger import WandbLogger
from tensorboardX import SummaryWriter
import os
import numpy as np
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', type=str, default='config/sr_sr3_16_128.json',
help='JSON file for configuration')
parser.add_argument('-p', '--phase', type=str, choices=['train', 'val'],
help='Run either train(training) or val(generation)', default='train')
parser.add_argument('-gpu', '--gpu_ids', type=str, default=None)
parser.add_argument('-debug', '-d', action='store_true')
parser.add_argument('-enable_wandb', action='store_true')
parser.add_argument('-log_wandb_ckpt', action='store_true')
parser.add_argument('-log_eval', action='store_true')
# parse configs
args = parser.parse_args()
opt = Logger.parse(args)
# Convert to NoneDict, which return None for missing key.
opt = Logger.dict_to_nonedict(opt)
# logging
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
Logger.setup_logger(None, opt['path']['log'],
'train', level=logging.INFO, screen=True)
Logger.setup_logger('val', opt['path']['log'], 'val', level=logging.INFO)
logger = logging.getLogger('base')
logger.info(Logger.dict2str(opt))
tb_logger = SummaryWriter(log_dir=opt['path']['tb_logger'])
# Initialize WandbLogger
if opt['enable_wandb']:
import wandb
wandb_logger = WandbLogger(opt)
wandb.define_metric('validation/val_step')
wandb.define_metric('epoch')
wandb.define_metric("validation/*", step_metric="val_step")
val_step = 0
else:
wandb_logger = None
# dataset
for phase, dataset_opt in opt['datasets'].items():
if phase == 'train' and args.phase != 'val':
train_set = Data.create_dataset(dataset_opt, phase)
train_loader = Data.create_dataloader(
train_set, dataset_opt, phase)
elif phase == 'val':
val_set = Data.create_dataset(dataset_opt, phase)
val_loader = Data.create_dataloader(
val_set, dataset_opt, phase)
logger.info('Initial Dataset Finished')
# model
diffusion = Model.create_model(opt)
logger.info('Initial Model Finished')
# Train
current_step = diffusion.begin_step
current_epoch = diffusion.begin_epoch
n_iter = opt['train']['n_iter']
if opt['path']['resume_state']:
logger.info('Resuming training from epoch: {}, iter: {}.'.format(
current_epoch, current_step))
diffusion.set_new_noise_schedule(
opt['model']['beta_schedule'][opt['phase']], schedule_phase=opt['phase'])
if opt['phase'] == 'train':
while current_step < n_iter:
current_epoch += 1
for _, train_data in enumerate(train_loader):
current_step += 1
if current_step > n_iter:
break
for i in train_data:
train_data[i] = (train_data[i] - train_data[i].min()) / (train_data[i].max() - train_data[i].min())
diffusion.feed_data(train_data)
diffusion.optimize_parameters()
# log
if current_step % opt['train']['print_freq'] == 0:
logs = diffusion.get_current_log()
message = '<epoch:{:3d}, iter:{:8,d}> '.format(
current_epoch, current_step)
for k, v in logs.items():
message += '{:s}: {:.4e} '.format(k, v)
tb_logger.add_scalar(k, v, current_step)
logger.info(message)
if wandb_logger:
wandb_logger.log_metrics(logs)
if current_step % opt['train']['save_checkpoint_freq'] == 0:
logger.info('Saving models and training states.')
diffusion.save_network(current_epoch, current_step)
if wandb_logger and opt['log_wandb_ckpt']:
wandb_logger.log_checkpoint(current_epoch, current_step)
if wandb_logger:
wandb_logger.log_metrics({'epoch': current_epoch-1})
# save model
logger.info('End of training.')