forked from richzhang/PerceptualSimilarity
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lpips_1dir_allpairs.py
58 lines (45 loc) · 1.68 KB
/
lpips_1dir_allpairs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import argparse
import os
import lpips
import numpy as np
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-d','--dir', type=str, default='./imgs/ex_dir_pair')
parser.add_argument('-o','--out', type=str, default='./imgs/example_dists.txt')
parser.add_argument('-v','--version', type=str, default='0.1')
parser.add_argument('--all-pairs', action='store_true', help='turn on to test all N(N-1)/2 pairs, leave off to just do consecutive pairs (N-1)')
parser.add_argument('-N', type=int, default=None)
parser.add_argument('--use_gpu', action='store_true', help='turn on flag to use GPU')
opt = parser.parse_args()
## Initializing the model
loss_fn = lpips.LPIPS(net='alex',version=opt.version)
if(opt.use_gpu):
loss_fn.cuda()
# crawl directories
f = open(opt.out,'w')
files = os.listdir(opt.dir)
if(opt.N is not None):
files = files[:opt.N]
F = len(files)
dists = []
for (ff,file) in enumerate(files[:-1]):
img0 = lpips.im2tensor(lpips.load_image(os.path.join(opt.dir,file))) # RGB image from [-1,1]
if(opt.use_gpu):
img0 = img0.cuda()
if(opt.all_pairs):
files1 = files[ff+1:]
else:
files1 = [files[ff+1],]
for file1 in files1:
img1 = lpips.im2tensor(lpips.load_image(os.path.join(opt.dir,file1)))
if(opt.use_gpu):
img1 = img1.cuda()
# Compute distance
dist01 = loss_fn.forward(img0,img1)
print('(%s,%s): %.3f'%(file,file1,dist01))
f.writelines('(%s,%s): %.6f\n'%(file,file1,dist01))
dists.append(dist01.item())
avg_dist = np.mean(np.array(dists))
stderr_dist = np.std(np.array(dists))/np.sqrt(len(dists))
print('Avg: %.5f +/- %.5f'%(avg_dist,stderr_dist))
f.writelines('Avg: %.6f +/- %.6f'%(avg_dist,stderr_dist))
f.close()