You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hi,
Thank you for your great job.
But I want to know how can I get the same cifar100 with fulltune result(85.90). I don't know the specific hyperparameters to get the result..
I only get 85.48
{"train_lr": 6.4497597627254405e-06, "train_loss": 0.19667177986449155, "test_loss": 0.7042211120641684, "test_acc1": 85.48, "test_acc5": 97.35, "epoch": 99, "n_parameters": 85875556}
My experiment setting is
python3 -m torch.distributed.launch --nproc_per_node=1 --use_env main_image.py
--batch_size 128 --cls_token
--finetune xxxx
--dist_eval --data_path xxxx
--output_dir xxxx
--drop_path 0.0 --blr 0.1
--dataset cifar100 --fulltune
Also, for the adapterformer-64, I also get "test_acc1": 85.8, "test_acc5": 97.92, how can I get 85.90?
python3 -m torch.distributed.launch --nproc_per_node=1 --use_env main_image.py
--batch_size 128 --cls_token
--finetune xxx
--dist_eval --data_path xxxx
--output_dir xxxx
--drop_path 0.0 --blr 0.1
--dataset cifar100 --ffn_adapt
The text was updated successfully, but these errors were encountered:
Hi,
Thank you for your great job.
But I want to know how can I get the same cifar100 with fulltune result(85.90). I don't know the specific hyperparameters to get the result..
I only get 85.48
{"train_lr": 6.4497597627254405e-06, "train_loss": 0.19667177986449155, "test_loss": 0.7042211120641684, "test_acc1": 85.48, "test_acc5": 97.35, "epoch": 99, "n_parameters": 85875556}
My experiment setting is
python3 -m torch.distributed.launch --nproc_per_node=1 --use_env main_image.py
--batch_size 128 --cls_token
--finetune xxxx
--dist_eval --data_path xxxx
--output_dir xxxx
--drop_path 0.0 --blr 0.1
--dataset cifar100 --fulltune
Also, for the adapterformer-64, I also get "test_acc1": 85.8, "test_acc5": 97.92, how can I get 85.90?
python3 -m torch.distributed.launch --nproc_per_node=1 --use_env main_image.py
--batch_size 128 --cls_token
--finetune xxx
--dist_eval --data_path xxxx
--output_dir xxxx
--drop_path 0.0 --blr 0.1
--dataset cifar100 --ffn_adapt
The text was updated successfully, but these errors were encountered: