Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

question about reproduce #22

Open
545487677 opened this issue Mar 21, 2023 · 0 comments
Open

question about reproduce #22

545487677 opened this issue Mar 21, 2023 · 0 comments

Comments

@545487677
Copy link

Hi,
Thank you for your great job.
But I want to know how can I get the same cifar100 with fulltune result(85.90). I don't know the specific hyperparameters to get the result..
I only get 85.48
{"train_lr": 6.4497597627254405e-06, "train_loss": 0.19667177986449155, "test_loss": 0.7042211120641684, "test_acc1": 85.48, "test_acc5": 97.35, "epoch": 99, "n_parameters": 85875556}
My experiment setting is
python3 -m torch.distributed.launch --nproc_per_node=1 --use_env main_image.py
--batch_size 128 --cls_token
--finetune xxxx
--dist_eval --data_path xxxx
--output_dir xxxx
--drop_path 0.0 --blr 0.1
--dataset cifar100 --fulltune

Also, for the adapterformer-64, I also get "test_acc1": 85.8, "test_acc5": 97.92, how can I get 85.90?
python3 -m torch.distributed.launch --nproc_per_node=1 --use_env main_image.py
--batch_size 128 --cls_token
--finetune xxx
--dist_eval --data_path xxxx
--output_dir xxxx
--drop_path 0.0 --blr 0.1
--dataset cifar100 --ffn_adapt

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant