-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathapp2.py
69 lines (55 loc) · 2.87 KB
/
app2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import os
import pandas as pd
from flask import Flask, render_template, request
from sklearn.neighbors import NearestNeighbors
app = Flask(__name__)
template_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), 'template'))
app.template_folder = template_dir
class Recommender:
def __init__(self):
self.df = pd.read_csv('dataset.csv')
def get_features(self):
nutrient_dummies = self.df.Nutrient.str.get_dummies()
disease_dummies = self.df.Disease.str.get_dummies(sep=' ')
diet_dummies = self.df.Diet.str.get_dummies(sep=' ')
feature_df = pd.concat([nutrient_dummies, disease_dummies, diet_dummies], axis=1)
return feature_df
def k_neighbor(self, inputs):
feature_df = self.get_features()
model = NearestNeighbors(n_neighbors=40, algorithm='ball_tree')
model.fit(feature_df)
df_results = pd.DataFrame(columns=list(self.df.columns))
distances, indices = model.kneighbors(inputs)
for i in list(indices):
df_results = pd.concat([df_results, self.df.loc[i]]) # Use concat instead of append
df_results = df_results.filter(['Name', 'Nutrient', 'Veg_Non', 'Price', 'Review', 'Diet', 'Disease', 'description'])
df_results = df_results.drop_duplicates(subset=['Name'])
df_results = df_results.reset_index(drop=True)
return df_results
ob = Recommender()
@app.route('/')
def index():
return render_template('index2.html')
@app.route('/recommend', methods=['POST'])
def recommend():
if request.method == "POST":
# Collect user input data from the form
categories = {
'calcium': 0, 'carbohydrates': 0, 'chloride': 0, 'fiber': 0, 'iodine': 0, 'iron': 0, 'magnesium': 0,
'manganese': 0, 'phosphorus': 0, 'potassium': 0, 'protien': 0, 'selenium': 0, 'sodium': 0, 'vitamin_a': 0,
'vitamin_c': 0, 'vitamin_d': 0, 'vitamin_e': 0, 'anemia': 0, 'cancer': 0, 'diabetes': 0, 'eye_disease': 0,
'goitre': 0, 'heart_disease': 0, 'hypertension': 0, 'kidney_disease': 0, 'obesity': 0, 'pregnancy': 0,
'rickets': 0, 'scurvy': 0, 'Mediterranean_diet': 0, 'alkaline_diet': 0, 'dash_diet': 0,
'gluten_free_diet': 0, 'high_fiber_diet': 0, 'high_protein_diet': 0, 'hormone_diet': 0,
'ketogenic_diet': 0, 'low_carb_diet': 0, 'low_fat_diet': 0, 'low_sodium_diet': 0, 'omni_diet': 0,
'paleo_diet': 0, 'type_a_diet': 0, 'type_o_diet': 0, 'vegan_diet': 0
}
for category in categories:
if request.form.get(category):
categories[category] = 1
final_input = list(categories.values())
results = ob.k_neighbor([final_input])
return render_template('result.html', results=results.to_dict('records'))
return render_template('template/index2.html')
if __name__ == '__main__':
app.run(debug=True)