forked from tmquan/diffusors
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsegmentation_diffuser_one.py
530 lines (448 loc) · 22.3 KB
/
segmentation_diffuser_one.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
import os
import glob
from typing import Optional, Union, List, Dict, Sequence, Callable
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import wandb
# Finish the current wandb run if any
wandb.finish()
wandb.login()
from argparse import ArgumentParser
from pytorch_lightning import LightningModule, LightningDataModule
from pytorch_lightning import Trainer, seed_everything
from pytorch_lightning.loggers import TensorBoardLogger, WandbLogger
from pytorch_lightning.callbacks import LearningRateMonitor
from pytorch_lightning.callbacks.model_checkpoint import ModelCheckpoint
import monai
from monai.data import Dataset, CacheDataset, DataLoader
from monai.data import list_data_collate, decollate_batch
from monai.utils import first, set_determinism, get_seed, MAX_SEED
from monai.transforms import (
apply_transform,
Randomizable,
AddChanneld,
Compose,
OneOf,
LoadImaged,
Spacingd,
Orientationd,
DivisiblePadd,
RandFlipd,
RandZoomd,
RandAffined,
RandScaleCropd,
CropForegroundd,
Resized, Rotate90d, HistogramNormalized,
ScaleIntensityd,
ScaleIntensityRanged,
ToTensord,
)
# from data import CustomDataModule
# from cdiff import *
from diffusers import UNet2DModel, DDPMScheduler
class ClassConditionedUNet(nn.Module):
def __init__(self, shape= 256, num_classes=2, class_emb_size=2):
super().__init__()
# The embedding layer will map the class label to a vector of size class_emb_size
self.class_emb = nn.Embedding(num_classes, class_emb_size)
# Self.model is an unconditional UNet with extra input channels to accept the conditioning information (the class embedding)
self.model = UNet2DModel(
sample_size=shape, # the target image resolution
in_channels=1 + class_emb_size, # the number of input channels, 3 for RGB images
out_channels=1, # the number of output channels
layers_per_block=2, # how many ResNet layers to use per UNet block
block_out_channels=(128, 128, 256, 256, 512, 512), # the number of output channes for each UNet block
down_block_types=(
"DownBlock2D", # a regular ResNet downsampling block
"DownBlock2D",
"DownBlock2D",
"DownBlock2D",
"AttnDownBlock2D", # a ResNet downsampling block with spatial self-attention
"DownBlock2D",
),
up_block_types=(
"UpBlock2D", # a regular ResNet upsampling block
"AttnUpBlock2D", # a ResNet upsampling block with spatial self-attention
"UpBlock2D",
"UpBlock2D",
"UpBlock2D",
"UpBlock2D"
),
)
# Our forward method now takes the class labels as an additional argument
def forward(self, x, t, class_labels):
# Shape of x:
bs, ch, w, h = x.shape
# class conditioning in right shape to add as additional input channels
class_cond = self.class_emb(class_labels) # Map to embedding dinemsion
class_cond = class_cond.view(bs, class_cond.shape[1], 1, 1).expand(bs, class_cond.shape[1], w, h)
# x is shape (bs, 1, 28, 28) and class_cond is now (bs, 4, 28, 28)
# Net input is now x and class cond concatenated together along dimension 1
net_input = torch.cat((x, class_cond), 1) # (bs, 5, 28, 28)
# Feed this to the unet alongside the timestep and return the prediction
return self.model(net_input, t).sample # (bs, 1, 28, 28)
class PairedAndUnsupervisedDataset(monai.data.Dataset, monai.transforms.Randomizable):
def __init__(
self,
keys: Sequence,
data: Sequence,
transform: Optional[Callable] = None,
length: Optional[Callable] = None,
batch_size: int = 32,
) -> None:
self.keys = keys
self.data = data
self.length = length
self.batch_size = batch_size
self.transform = transform
def __len__(self) -> int:
if self.length is None:
return min((len(dataset) for dataset in self.data))
else:
return self.length
def _transform(self, index: int):
data = {}
self.R.seed(index)
# for key, dataset in zip(self.keys, self.data):
# rand_idx = self.R.randint(0, len(dataset))
# data[key] = dataset[rand_idx]
rand_idx = self.R.randint(0, len(self.data[0]))
data[self.keys[0]] = self.data[0][rand_idx] # image
data[self.keys[1]] = self.data[1][rand_idx] # label
rand_idy = self.R.randint(0, len(self.data[2]))
data[self.keys[2]] = self.data[2][rand_idy] # unsup
if self.transform is not None:
data = apply_transform(self.transform, data)
return data
class PairedAndUnsupervisedDataModule(LightningDataModule):
def __init__(self,
train_image_dirs: str = "path/to/dir",
train_label_dirs: str = "path/to/dir",
train_unsup_dirs: str = "path/to/dir",
val_image_dirs: str = "path/to/dir",
val_label_dirs: str = "path/to/dir",
val_unsup_dirs: str = "path/to/dir",
test_image_dirs: str = "path/to/dir",
test_label_dirs: str = "path/to/dir",
test_unsup_dirs: str = "path/to/dir",
shape: int = 256,
batch_size: int = 32,
train_samples: int = 4000,
val_samples: int = 800,
test_samples: int = 800,
):
super().__init__()
self.batch_size = batch_size
self.shape = shape
# self.setup()
self.train_image_dirs = train_image_dirs
self.train_label_dirs = train_label_dirs
self.train_unsup_dirs = train_unsup_dirs
self.val_image_dirs = val_image_dirs
self.val_label_dirs = val_label_dirs
self.val_unsup_dirs = val_unsup_dirs
self.test_image_dirs = test_image_dirs
self.test_label_dirs = test_label_dirs
self.test_unsup_dirs = test_unsup_dirs
self.train_samples = train_samples
self.val_samples = val_samples
self.test_samples = test_samples
# self.setup()
def glob_files(folders: str=None, extension: str='*.nii.gz'):
assert folders is not None
paths = [glob.glob(os.path.join(folder, extension), recursive = True) for folder in folders]
files = sorted([item for sublist in paths for item in sublist])
print(len(files))
print(files[:1])
return files
self.train_image_files = glob_files(folders=train_image_dirs, extension='**/*.png')
self.train_label_files = glob_files(folders=train_label_dirs, extension='**/*.png')
self.train_unsup_files = glob_files(folders=train_unsup_dirs, extension='**/*.png')
self.val_image_files = glob_files(folders=val_image_dirs, extension='**/*.png')
self.val_label_files = glob_files(folders=val_label_dirs, extension='**/*.png')
self.val_unsup_files = glob_files(folders=val_unsup_dirs, extension='**/*.png')
self.test_image_files = glob_files(folders=test_image_dirs, extension='**/*.png')
self.test_label_files = glob_files(folders=test_label_dirs, extension='**/*.png')
self.test_unsup_files = glob_files(folders=test_unsup_dirs, extension='**/*.png')
def setup(self, seed: int=42, stage: Optional[str]=None):
# make assignments here (val/train/test split)
# called on every process in DDP
set_determinism(seed=seed)
def train_dataloader(self):
self.train_transforms = Compose(
[
LoadImaged(keys=["image", "label", "unsup"], ensure_channel_first=True),
# AddChanneld(keys=["image", "label", "unsup"],),
ScaleIntensityRanged(keys=["label"], a_min=0, a_max=128, b_min=0, b_max=1, clip=True),
ScaleIntensityd(keys=["image", "label", "unsup"], minv=0.0, maxv=1.0,),
# CropForegroundd(keys=["image", "label", "unsup"], source_key="image", select_fn=(lambda x: x>0), margin=0),
HistogramNormalized(keys=["image", "unsup"], min=0.0, max=1.0,),
# RandZoomd(keys=["image", "label", "unsup"], prob=1.0, min_zoom=0.9, max_zoom=1.1, padding_mode='constant', mode=["area", "nearest", "area"]),
RandFlipd(keys=["image", "label", "unsup"], prob=0.5, spatial_axis=0),
# RandAffined(keys=["image", "label", "unsup"], prob=1.0, rotate_range=0.1, translate_range=10, scale_range=0.01, padding_mode='zeros', mode=["bilinear", "nearest", "bilinear"]),
Resized(keys=["image", "label", "unsup"], spatial_size=256, size_mode="longest", mode=["area", "nearest", "area"]),
DivisiblePadd(keys=["image", "label", "unsup"], k=256, mode="constant", constant_values=0),
ToTensord(keys=["image", "label", "unsup"],),
]
)
self.train_datasets = PairedAndUnsupervisedDataset(
keys=["image", "label", "unsup"],
data=[self.train_image_files, self.train_label_files, self.train_unsup_files],
transform=self.train_transforms,
length=self.train_samples,
batch_size=self.batch_size,
)
self.train_loader = DataLoader(
self.train_datasets,
batch_size=self.batch_size,
num_workers=16,
collate_fn=list_data_collate,
shuffle=True,
)
return self.train_loader
def val_dataloader(self):
self.val_transforms = Compose(
[
LoadImaged(keys=["image", "label", "unsup"], ensure_channel_first=True),
#AddChanneld(keys=["image", "label", "unsup"],),
ScaleIntensityRanged(keys=["label"], a_min=0, a_max=128, b_min=0, b_max=1, clip=True),
ScaleIntensityd(keys=["image", "label", "unsup"], minv=0.0, maxv=1.0,),
# CropForegroundd(keys=["image", "label", "unsup"], source_key="image", select_fn=(lambda x: x>0), margin=0),
HistogramNormalized(keys=["image", "unsup"], min=0.0, max=1.0,),
Resized(keys=["image", "label", "unsup"], spatial_size=256, size_mode="longest", mode=["area", "nearest", "area"]),
DivisiblePadd(keys=["image", "label", "unsup"], k=256, mode="constant", constant_values=0),
ToTensord(keys=["image", "label", "unsup"],),
]
)
self.val_datasets = PairedAndUnsupervisedDataset(
keys=["image", "label", "unsup"],
data=[self.val_image_files, self.val_label_files, self.val_unsup_files],
transform=self.val_transforms,
length=self.val_samples,
batch_size=self.batch_size,
)
self.val_loader = DataLoader(
self.val_datasets,
batch_size=self.batch_size,
num_workers=8,
collate_fn=list_data_collate,
shuffle=True,
)
return self.val_loader
class DDMMLightningModule(LightningModule):
def __init__(self, hparams, *kwargs) -> None:
super().__init__()
self.lr = hparams.lr
self.epochs = hparams.epochs
self.weight_decay = hparams.weight_decay
self.num_timesteps = hparams.timesteps
self.batch_size = hparams.batch_size
self.shape = hparams.shape
self.num_classes = 2
self.timesteps = hparams.timesteps
# Create a scheduler
self.noise_scheduler = DDPMScheduler(num_train_timesteps=self.timesteps, beta_schedule='squaredcos_cap_v2')
# The embedding layer will map the class label to a vector of size class_emb_size
self.diffusion = ClassConditionedUNet(
shape=self.shape,
num_classes=2,
class_emb_size=2,
)
self.loss_func = nn.SmoothL1Loss(reduction="mean", beta=0.02)
self.save_hyperparameters()
def _common_step(self, batch, batch_idx, optimizer_idx, stage: Optional[str]='common'):
image, label, unsup = batch["image"], batch["label"], batch["unsup"]
_device = image.device
rng_p = torch.torch.randn_like(image)
rng_u = torch.torch.randn_like(unsup)
bs = image.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(0, self.noise_scheduler.num_train_timesteps, (bs,), device=_device).long()
gamma = torch.rand(bs).to(_device)
# 1st pass, supervised
# Add noise to the clean images according to the noise magnitude at each timestep
# (this is the forward diffusion process)
mid_i = self.noise_scheduler.add_noise(image * 2.0 - 1.0, rng_p, timesteps)
mid_l = self.noise_scheduler.add_noise(label * 2.0 - 1.0, rng_p, timesteps)
cls_i = torch.zeros_like(gamma).long()
cls_l = torch.ones_like(gamma).long()
est_i = self.diffusion.forward(mid_i, timesteps, cls_i)
est_l = self.diffusion.forward(mid_l, timesteps, cls_l)
super_loss = self.loss_func(est_i, rng_p) \
+ self.loss_func(est_l, rng_p)
# 2nd pass, unsupervised
mid_u = self.noise_scheduler.add_noise(unsup * 2.0 - 1.0, rng_u, timesteps)
cls_u = torch.zeros_like(gamma).long()
est_u = self.diffusion.forward(mid_u, timesteps, cls_u)
unsup_loss = self.loss_func(est_u, rng_u)
self.log(f'{stage}_super_loss', super_loss, on_step=(stage == 'train'), prog_bar=True, logger=True, sync_dist=True, batch_size=self.batch_size)
self.log(f'{stage}_unsup_loss', unsup_loss, on_step=(stage == 'train'), prog_bar=True, logger=True, sync_dist=True, batch_size=self.batch_size)
loss = super_loss + unsup_loss
if stage == 'train' and batch_idx % 10 == 0:
# noise_samples = torch.randn_like(unsup)
# image_samples = self.diffusion.sample(classes=image_p.long(), noise = noise_samples)
# label_samples = self.diffusion.sample(classes=label_p.long(), noise = noise_samples)
with torch.no_grad():
rng = torch.randn_like(image)
sam_i = rng.clone().detach()
sam_l = rng.clone().detach()
for i, t in enumerate(self.noise_scheduler.timesteps):
res_i = self.diffusion.forward(sam_i, t, cls_i.long())
res_l = self.diffusion.forward(sam_l, t, cls_l.long())
# Update sample with step
sam_i = self.noise_scheduler.step(res_i, t, sam_i).prev_sample
sam_l = self.noise_scheduler.step(res_l, t, sam_l).prev_sample
sam_i = sam_i * 0.5 + 0.5
sam_l = sam_l * 0.5 + 0.5
viz2d = torch.cat([image, label, sam_i, sam_l, unsup], dim=-1).transpose(2, 3)
grid = torchvision.utils.make_grid(viz2d, normalize=False, scale_each=False, nrow=8, padding=0)
tensorboard = self.logger.experiment
tensorboard.add_image(f'{stage}_samples', grid.clamp(0., 1.), self.global_step // 10)
info = {f'loss': loss}
return info
def training_step(self, batch, batch_idx):
return self._common_step(batch, batch_idx, optimizer_idx=0, stage='train')
def validation_step(self, batch, batch_idx):
return self._common_step(batch, batch_idx, optimizer_idx=0, stage='validation')
def test_step(self, batch, batch_idx):
return self._common_step(batch, batch_idx, optimizer_idx=0, stage='test')
def _common_epoch_end(self, outputs, stage: Optional[str] = 'common'):
loss = torch.stack([x[f'loss'] for x in outputs]).mean()
self.log(f'{stage}_loss_epoch', loss, on_step=False, prog_bar=True, logger=True, sync_dist=True)
def train_epoch_end(self, outputs):
return self._common_epoch_end(outputs, stage='train')
def validation_epoch_end(self, outputs):
return self._common_epoch_end(outputs, stage='validation')
def test_epoch_end(self, outputs):
return self._common_epoch_end(outputs, stage='test')
def configure_optimizers(self):
optimizer = torch.optim.RAdam(self.parameters(), lr=self.lr, weight_decay=self.weight_decay)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[10, 20], gamma=0.1)
return [optimizer], [scheduler]
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--timesteps", type=int, default=100, help="timesteps")
parser.add_argument("--batch_size", type=int, default=8, help="batch size")
parser.add_argument("--shape", type=int, default=256, help="spatial size of the tensor")
parser.add_argument("--train_samples", type=int, default=40000, help="training samples")
parser.add_argument("--val_samples", type=int, default=8000, help="validation samples")
parser.add_argument("--test_samples", type=int, default=4000, help="test samples")
parser.add_argument("--logsdir", type=str, default='logs', help="logging directory")
parser.add_argument("--datadir", type=str, default='data', help="data directory")
parser.add_argument("--epochs", type=int, default=31, help="number of epochs")
parser.add_argument("--lr", type=float, default=1e-4, help="adam: learning rate")
parser.add_argument("--ckpt", type=str, default=None, help="path to checkpoint")
parser.add_argument("--weight_decay", type=float, default=1e-4, help="Weight decay")
parser = Trainer.add_argparse_args(parser)
# Collect the hyper parameters
hparams = parser.parse_args()
# Create data module
train_image_dirs = [
os.path.join(hparams.datadir, 'SpineXRVertSegmentation/T62020/20200501/raw/images'),
os.path.join(hparams.datadir, 'SpineXRVertSegmentation/T62022/20220501/raw/images'),
os.path.join(hparams.datadir, 'SpineXRVertSegmentation/T62021/20211101/raw/images'),
# os.path.join(hparams.datadir, 'SpineXRVertSegmentation/VinDr/v1/processed/train/images/'),
# os.path.join(hparams.datadir, 'SpineXRVertSegmentation/VinDr/v1/processed/test/images/'),
]
train_label_dirs = [
os.path.join(hparams.datadir, 'SpineXRVertSegmentation/T62020/20200501/raw/labels'),
os.path.join(hparams.datadir, 'SpineXRVertSegmentation/T62022/20220501/raw/labels'),
os.path.join(hparams.datadir, 'SpineXRVertSegmentation/T62021/20211101/raw/labels'),
]
train_unsup_dirs = [
os.path.join(hparams.datadir, 'SpineXRVertSegmentation/VinDr/v1/processed/train/images/'),
]
val_image_dirs = [
os.path.join(hparams.datadir, 'SpineXRVertSegmentation/T62020/20200501/raw/images'),
os.path.join(hparams.datadir, 'SpineXRVertSegmentation/T62022/20220501/raw/images'),
os.path.join(hparams.datadir, 'SpineXRVertSegmentation/T62021/20211101/raw/images'),
]
val_label_dirs = [
os.path.join(hparams.datadir, 'SpineXRVertSegmentation/T62020/20200501/raw/labels'),
os.path.join(hparams.datadir, 'SpineXRVertSegmentation/T62022/20220501/raw/labels'),
os.path.join(hparams.datadir, 'SpineXRVertSegmentation/T62021/20211101/raw/labels'),
]
val_unsup_dirs = [
os.path.join(hparams.datadir, 'SpineXRVertSegmentation/VinDr/v1/processed/test/images/'),
]
test_image_dirs = val_image_dirs
test_label_dirs = val_label_dirs
test_unsup_dirs = val_unsup_dirs
datamodule = PairedAndUnsupervisedDataModule(
train_image_dirs = train_image_dirs,
train_label_dirs = train_label_dirs,
train_unsup_dirs = train_unsup_dirs,
val_image_dirs = val_image_dirs,
val_label_dirs = val_label_dirs,
val_unsup_dirs = val_unsup_dirs,
test_image_dirs = test_image_dirs,
test_label_dirs = test_label_dirs,
test_unsup_dirs = test_unsup_dirs,
train_samples = hparams.train_samples,
val_samples = hparams.val_samples,
test_samples = hparams.test_samples,
batch_size = hparams.batch_size,
shape = hparams.shape,
# keys = ["image", "label", "unsup"]
)
datamodule.setup(seed=hparams.seed)
# debug_data = first(datamodule.val_dataloader())
# image, label, unsup = debug_data["image"], \
# debug_data["label"], \
# debug_data["unsup"]
# print(image.shape, label.shape, unsup.shape)
####### Test camera mu and bandwidth ########
# test_random_uniform_cameras(hparams, datamodule)
#############################################
model = DDMMLightningModule(
hparams = hparams
)
# model = model.load_from_checkpoint(hparams.ckpt, strict=False) if hparams.ckpt is not None else model
# Seed the application
seed_everything(42)
# Callback
checkpoint_callback = ModelCheckpoint(
dirpath=hparams.logsdir,
filename='{epoch:02d}-{validation_loss_epoch:.2f}',
save_top_k=-1,
save_last=True,
every_n_epochs=1,
)
lr_callback = LearningRateMonitor(logging_interval='step')
# Logger
tensorboard_logger = TensorBoardLogger(save_dir=hparams.logsdir, log_graph=True)
# Init model with callbacks
trainer = Trainer.from_argparse_args(
hparams,
max_epochs=hparams.epochs,
logger=[tensorboard_logger],
callbacks=[
lr_callback,
checkpoint_callback,
],
# accumulate_grad_batches=4,
strategy="ddp_sharded", #"fsdp", #"ddp_sharded", #"horovod", #"deepspeed", #"ddp_sharded",
# strategy="fsdp", #"fsdp", #"ddp_sharded", #"horovod", #"deepspeed", #"ddp_sharded",
# precision=16, #if hparams.use_amp else 32,
# amp_backend='apex',
# amp_level='O1', # see https://nvidia.github.io/apex/amp.html#opt-levels
# stochastic_weight_avg=True,
# auto_scale_batch_size=True,
# gradient_clip_val=5,
# gradient_clip_algorithm='norm', #'norm', #'value'
# track_grad_norm=2,
# detect_anomaly=True,
# benchmark=None,
# deterministic=False,
# profiler="simple",
)
trainer.fit(
model,
datamodule, # ,
ckpt_path=hparams.ckpt if hparams.ckpt is not None else None, # "some/path/to/my_checkpoint.ckpt"
)
# test
# serve