forked from rosinality/glow-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathforget_group.py
256 lines (233 loc) · 12.4 KB
/
forget_group.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import json
import math
import os
import sys
from glob import glob
import numpy as np
import wandb
from easydict import EasyDict
from torch.utils.data import Subset, Dataset, DataLoader
import torch
from forget import make_forget_exp_dir
from utils import set_all_seeds, get_args, get_default_forget_transform, load_model, save_dict_as_json, \
compute_dataloader_bpd, plotly_init, save_fig, set_fig_config, np_gaussian_pdf
import plotly.graph_objects as go
from plotly.colors import qualitative
import logging
from model import Glow
from fairface_dataset import FairFaceDataset, LOCAL_FAIRFACE_ROOT, one_type_label_wrapper
from forget_attribute import forget_attribute, generate_random_samples
from evaluate import compute_ds_distribution
def compute_group_step_stats(args: EasyDict,
step: int,
model: torch.nn.DataParallel,
device,
remember_ds: Dataset,
forget_ds: Dataset,
sampling_device: torch.device,
init: bool = False,
generate_samples: bool = True) -> torch.Tensor:
model.eval()
cur_forget_dl = DataLoader(forget_ds, batch_size=256, shuffle=True, num_workers=args.num_workers)
cur_remember_dl = DataLoader(remember_ds, batch_size=256, shuffle=True, num_workers=args.num_workers)
if (step + 1) % args.log_every == 0 or init:
eval_bpd = compute_dataloader_bpd(2 ** args.n_bits, args.img_size, model,
device, cur_remember_dl, reduce=False).cpu()
args.eval_mu = eval_bpd.mean().item()
args.eval_std = eval_bpd.std().item()
forget_bpd = compute_dataloader_bpd(2 ** args.n_bits, args.img_size, model,
device, cur_forget_dl, reduce=False).cpu()
logging.info(
f"eval_mu: {args.eval_mu}, eval_std: {args.eval_std}, forget_bpd: {forget_bpd.mean().item()} for iteration {step}")
forget_signed_distance = (forget_bpd.mean().item() - args.eval_mu) / args.eval_std
wandb.log({f"eval_bpd": eval_bpd.mean().item(),
"eval_mu": args.eval_mu,
"eval_std": args.eval_std,
"forget_distance": forget_signed_distance},
commit=False)
if generate_samples:
# to generate images using the reverse funciton, we need the module itself from the DataParallel wrapper
generate_random_samples(model.module, sampling_device, args,
f"experiments/{args.exp_name}/random_samples/step_{step}.pt")
return forget_bpd
return torch.tensor([0], dtype=torch.float)
def compute_group_distribution(exp_dir, **kwargs):
with open(f"{exp_dir}/args.json", 'r') as f:
args = EasyDict(json.load(f))
if 'ckpt_path' in kwargs:
args.ckpt_path = kwargs['ckpt_path']
else:
args.ckpt_path = f"{exp_dir}/checkpoints/model_last.pt"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
transform = get_default_forget_transform(args.img_size, args.n_bits)
age_label = 1 # label for ages 3-9
fairface_ds = FairFaceDataset(root=LOCAL_FAIRFACE_ROOT,
transform=transform,
target_transform=one_type_label_wrapper('age', one_hot=False),
data_type=args.data_split)
for group in ["forget", "remember"]:
save_dir = f"{exp_dir}/distribution_stats/{group}"
indices = torch.load(f"{LOCAL_FAIRFACE_ROOT}/age_indices/{args.data_split}/{group}_indices_{age_label}.pt")
if group == 'forget' and args.forget_group_size is not None:
print(f"Using {args.forget_group_size} samples from {group} group")
indices = indices[:args.forget_group_size]
if group == 'remember' and args.remember_group_size is not None:
print(f"Using {args.remember_group_size} samples from {group} group")
indices = indices[:args.remember_group_size]
ds = Subset(fairface_ds, indices)
if 'suff' in kwargs:
save_dir += f"_{kwargs['suff']}"
compute_ds_distribution(256, save_dir, training=False, args=args, device=device, ds=ds, **kwargs)
def plot_distributions(exp_dir, skip_reference=False, base=False):
plotly_init()
fig = go.Figure()
fig.update_layout(showlegend=True, plot_bgcolor='rgba(0,0,0,0)')
distributions = os.listdir(f"{exp_dir}/distribution_stats")
file_name = "nll_distribution.pt"
remember_mean, remember_std = None, None
colors = qualitative.D3
M = 128 * 128 * 3
n_bins = 2 ** 5
for i, d in enumerate(distributions):
cur_name = d
cur_color = colors[i]
if 'partial' in d:
cur_name = "reference"
if skip_reference:
continue
if d == 'forget':
continue
cur_dist = torch.load(f"{exp_dir}/distribution_stats/{d}/{file_name}").numpy()
cur_dist = (cur_dist + (M * math.log(n_bins))) / (math.log(2) * M)
n_points = int(math.sqrt(cur_dist.size))
x = np.linspace(cur_dist.min(), cur_dist.max(), n_points)
y = np_gaussian_pdf(x, cur_dist.mean(), cur_dist.std())
if d == 'remember':
remember_mean, remember_std = cur_dist.mean(), cur_dist.std()
line_params = dict(color=colors[0])
else:
line_params = dict(color=colors[6], dash='dash')
fig.add_trace(go.Scatter(x=x, y=y, name=cur_name, line=line_params))
assert remember_mean is not None and remember_std is not None
forget_x = torch.load(f"{exp_dir}/distribution_stats/forget/{file_name}").numpy()
forget_x = (forget_x + (M * math.log(n_bins))) / (math.log(2) * M)
forget_y = np_gaussian_pdf(forget_x, remember_mean, remember_std)
fig.add_trace(go.Scatter(x=forget_x, y=forget_y, name='forget', mode='markers',
marker=dict(size=8, line_width=2, color=colors[1])))
baseline_dist = torch.load("models/baseline/continue_celeba/distribution_stats/valid_partial_10000/nll_distribution.pt").numpy()
baseline_dist = (baseline_dist + (M * math.log(n_bins))) / (math.log(2) * M)
n_points = int(math.sqrt(baseline_dist.size))
x = np.linspace(baseline_dist.min(), baseline_dist.max(), n_points)
y = np_gaussian_pdf(x, baseline_dist.mean(), baseline_dist.std())
if base:
name = "base"
else:
name = "baseline"
fig.add_trace(go.Scatter(x=x, y=y, name=name, line=dict(color=colors[4], dash='dash')))
set_fig_config(fig, font_size=16)
fig.update_xaxes(title='BPD')
fig.update_yaxes(title='Density')
suff = "" if skip_reference else "_w_ref"
save_fig(fig, f"{exp_dir}/distribution_plot_{name}{suff}.pdf")
def main():
logging.getLogger().setLevel(logging.INFO)
args = get_args(forget=True, forget_group=True)
all_devices = list(range(torch.cuda.device_count()))
train_devices = all_devices[:-1]
original_model_device = torch.device(f"cuda:{all_devices[-1]}")
args.exp_name = make_forget_exp_dir(args.exp_name, exist_ok=False, dir_name="supp_group")
os.makedirs(f"experiments/{args.exp_name}/random_samples")
logging.info(args)
model: torch.nn.DataParallel = load_model(args, training=True, device_ids=train_devices,
output_device=train_devices[0])
original_model: Glow = load_model(args, device=original_model_device, training=False)
original_model.requires_grad_(False)
transform = get_default_forget_transform(args.img_size, args.n_bits)
age_label = 1 # label for ages 3-9
args['age_label'] = age_label
split = 'train'
fairface_ds = FairFaceDataset(root=LOCAL_FAIRFACE_ROOT,
transform=transform,
target_transform=one_type_label_wrapper('age', one_hot=False),
data_type=split)
load_from_cache = True
if load_from_cache:
forget_indices = torch.load(f"{LOCAL_FAIRFACE_ROOT}/age_indices/{split}/forget_indices_{age_label}.pt")
if args.forget_group_size is not None:
assert args.forget_group_size <= len(forget_indices),\
f"forget group size {args.forget_group_size} is too large"
forget_indices = forget_indices[:args.forget_group_size]
remember_indices = torch.load(f"{LOCAL_FAIRFACE_ROOT}/age_indices/{split}/remember_indices_{age_label}.pt")
if args.remember_group_size is not None:
assert args.remember_group_size <= len(remember_indices),\
f"remember group size {args.remember_group_size} is too large"
remember_indices = remember_indices[:args.remember_group_size]
else:
assert args.remember_group_size is not None and args.forget_group_size is not None, \
"remember_group_size and forget_group_size must be specified if not loading from cache"
assert args.remember_group_size + args.forget_group_size <= len(fairface_ds), \
f"remember_group_size + forget_group_size must be less than the total number of samples which " \
f"is {len(fairface_ds)}, but got {args.remember_group_size + args.forget_group_size}"
rand_indices = torch.randperm(len(fairface_ds))
forget_indices = rand_indices[:args.forget_group_size]
remember_indices = rand_indices[args.forget_group_size:args.forget_group_size + args.remember_group_size]
forget_ds = Subset(fairface_ds, forget_indices)
remember_ds = Subset(fairface_ds, remember_indices)
forget_optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
args["remember_ds_len"] = len(remember_ds)
args["forget_ds_len"] = len(forget_ds)
wandb.init(project="forget_children", entity="malnick", name=args.exp_name, config=args,
dir=f'experiments/{args.exp_name}/wandb')
save_dict_as_json(args, f'experiments/{args.exp_name}/args.json')
compute_group_step_stats(args, 0, model, None, remember_ds, forget_ds, train_devices[0], init=True,
generate_samples=True)
logging.info("Starting forget attribute procedure")
forget_attribute(args, remember_ds, forget_ds, model,
original_model, train_devices, original_model_device,
forget_optimizer, generate_samples=True)
def plot_distances(exp_dirs, prob_dist=True):
values = []
for exp_dir in exp_dirs:
with open(f"{exp_dir}/args.json", "r") as f:
args = EasyDict(json.load(f))
cur_key = args.forget_ds_len
remember_dist = torch.load(f"{exp_dir}/distribution_stats/remember/nll_distribution.pt")
mu, sigma = remember_dist.mean(), remember_dist.std()
forget_dist = torch.load(f"{exp_dir}/distribution_stats/forget/nll_distribution.pt")
forget_mean_dist = ((forget_dist - mu) / sigma).mean()
values.append((cur_key, forget_mean_dist))
values = sorted(values, key=lambda x: x[0])
x, y = zip(*values)
if prob_dist:
y = 1 - 0.5 * (1 + torch.erf(torch.tensor(y) / np.sqrt(2)))
plotly_init()
fig = go.Figure(layout=go.Layout(plot_bgcolor='rgba(0,0,0,0)'))
set_fig_config(fig, font_size=18)
fig.add_trace(go.Scatter(x=list(x), y=list(y), mode='lines+markers'))
fig.update_xaxes(title='# Images')
if not prob_dist:
fig.update_yaxes(title='AMSD')
else:
fig.update_yaxes(title='Likelihood quantile')
fig.update_layout(
yaxis=dict() if prob_dist else dict(
tickmode='array',
tickvals=[0, 1, 2, 3, 4],
ticktext=['0', '1σ', '2σ', '3σ', '4σ'],
),
xaxis=dict(tickmode='array',
tickvals=[i for i in range(0, 180, 20)],
ticktext=[str(i) for i in range(0, 180, 20)]))
fig.write_image("images/no_data_access_probs.pdf")
if __name__ == '__main__':
logging.getLogger().setLevel(logging.INFO)
set_all_seeds(37)
# os.environ["WANDB_DISABLED"] = "true" # for debugging without wandb
main()
# exps = glob("experiments/forget_children_long/*")
# exps = [exp for exp in exps if (not int(exp.split("_")[-1]) > 120) and
# os.path.exists(f"{exp}/distribution_stats/remember")]
# plot_distances(exps)
# exp = sys.argv[1]
# exp = "experiments/forget_children/forget_10"
# plot_distributions(exp, skip_reference=False, base=True)