-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathby-run-locus-demux.smk
143 lines (134 loc) · 6.82 KB
/
by-run-locus-demux.smk
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
"""
An alternate demux/trim/merge workflow for duplicated barcodes across loci.
"""
def input_for_merge_split_by_locus_final(w):
samples_grouped = make_grouped_samples(w.run)
for row in samples_grouped:
if w.sample in row["SamplesMap"]:
break
else:
raise ValueError
if len(row["SamplesMap"]) > 1:
return expand(
"analysis/merge/{run}.grouped.split_by_locus/{sample}.{locus}.fastq.gz",
run=w.run, sample=row["Sample"], locus=row["SamplesMap"][w.sample])
# If there was actually only one sample for this particular case, we can
# skip over the slow by-locus demux and just take the regular demux+merge
# output
return expand(
"analysis/merge/{run}.grouped/{sample}.fastq.gz",
run=w.run, sample=row["Sample"])
rule merge_split_by_locus_link:
"""Symlink merge file from locus-based workflow into main merge path"""
output: "analysis/merge/{run}/{sample}.fastq.gz"
input: "analysis/merge/{run}.grouped.final/{sample}.fastq.gz"
shell: "ln -sr {input} {output}"
rule merge_split_by_locus_final:
"""Symlink real sample file to locus-demux'd file"""
output: "analysis/merge/{run}.grouped.final/{sample}.fastq.gz"
input: input_for_merge_split_by_locus_final
shell: "ln -sr {input} {output}"
rule merge_split_by_locus:
"""Split files from a cross-locus demux using IgBLAST"""
output: expand("analysis/merge/{{run}}.grouped.split_by_locus/{{sample}}.{locus}.fastq.gz", locus=["IGH", "IGK", "IGL", "other"])
input: "analysis/merge/{run}.grouped/{sample}.fastq.gz"
threads: 16
params:
output_pattern=lambda w: f"analysis/merge/{w.run}.grouped.split_by_locus/{w.sample}.{{locus}}.fastq.gz"
shell: "split_by_locus.py -t {threads} {input} --output-pattern '{params.output_pattern}'"
def make_grouped_samples(runid):
"""Make placeholder sample info for samples with identical barcoding on one run"""
out = []
for attrs in SAMPLES.values():
if attrs["Run"] == runid:
out.append(attrs.copy())
out_grouped = defaultdict(dict)
for row in out:
key = (row["BarcodeFwd"], row["BarcodeRev"])
locus = {"lambda": "IGL", "kappa": "IGK"}.get(row["Type"], "IGH")
if locus in out_grouped[key]:
raise ValueError(
f"Duplicate {locus} entry for Run/BCFwd/BCRev "
f"{row['Run']}/{row['BarcodeFwd']}/{row['BarcodeRev']}")
row["Locus"] = locus
out_grouped[key][locus] = row
out_flat = []
for group in out_grouped.values():
# make combo sample name sorted by locus, plus some extra entries for
# keeping track of things
locus_samples = sorted((key, row["Sample"]) for key, row in group.items())
sample = "_".join(pair[1] for pair in locus_samples)
samples = "/".join(pair[0] + ":" + pair[1] for pair in locus_samples)
loci = "/".join(pair[0] for pair in locus_samples)
rows = list(group.values())
# make a single row out for each group using that sample name
row_out = {key: rows[0][key] for key in ["Sample", "Run", "BarcodeFwd", "BarcodeRev"]}
row_out["Sample"] = sample
row_out["Loci"] = loci
row_out["Samples"] = samples
row_out["SamplesMap"] = {pair[1]: pair[0] for pair in locus_samples}
out_flat.append(row_out)
return out_flat
rule demux_locus_samples:
"""Make a placeholder samples.csv for cases that need demuxing by locus"""
output: "analysis/demux/{run}.samples_grouped.csv"
input: ancient("metadata/samples.csv")
run:
fields = ["Sample", "Run", "BarcodeFwd", "BarcodeRev", "Loci", "Samples"]
sample_attrs = make_grouped_samples(wildcards.run)
sample_attrs = [{k: v for k, v in attrs.items() if k in fields} for attrs in sample_attrs]
with open(output[0], "w") as f_out:
writer = csv.DictWriter(
f_out, fields, lineterminator="\n")
writer.writeheader()
writer.writerows(sample_attrs)
def make_run_rules_locus_demux():
"""Generate dynamic per-sequencing-run rules where applicable (alternate workflow)
This is equivalent to the per-run rules in by-run.smk but for the alternate
workflow where we need to split files by antibody locus."""
by_run = defaultdict(list)
for samp_attrs in SAMPLES.values():
if samp_attrs["Run"]:
by_run[samp_attrs["Run"]].append(samp_attrs)
for runid, samp_attrs_list in by_run.items():
samp_names = [samp["Sample"] for samp in samp_attrs_list]
bc_pairs = [(samp["BarcodeFwd"], samp["BarcodeRev"]) for samp in samp_attrs_list]
if len(bc_pairs) > len(set(bc_pairs)):
# special case where we have duplicated barcode pairs and need to
# demux by locus too.
samples_grouped = make_grouped_samples(runid)
samp_names_grpd = [sample["Sample"] for sample in samples_grouped]
rule:
name: f"demux_{runid}"
output:
outdir=directory(f"analysis/demux/{runid}.grouped"),
fqgz=expand("analysis/demux/{run}.grouped/{sample}.{rp}.fastq.gz", run=runid, sample=samp_names_grpd, rp=["R1", "R2"])
input:
reads=f"analysis/reads/{runid}",
samples=f"analysis/demux/{runid}.samples_grouped.csv"
log:
conda=f"analysis/demux/{runid}.grouped/conda_build.txt"
conda: "envs/igseq.yaml"
shell:
"""
conda list --explicit > {log.conda}
igseq demux --samples {input.samples} --details {output.outdir}/details.csv.gz {input.reads} --outdir {output.outdir}
"""
# These are just helpers to group outputs from other rules by run
# ID, but with some extra steps for this case
rule:
name: f"merge_{runid}"
input: expand("analysis/merge/{run}/{sample}.fastq.gz", run=runid, sample=samp_names)
rule:
name: f"merge_{runid}_split_final"
input: expand("analysis/merge/{run}.grouped.final/{sample}.fastq.gz", run=runid, sample=samp_names)
rule:
name: f"merge_{runid}_split"
input: expand("analysis/merge/{run}.grouped.split_by_locus/{sample}.{locus}.fastq.gz", run=runid, sample=samp_names_grpd, locus=["IGH", "IGK", "IGL", "other"])
rule:
name: f"merge_{runid}_grouped"
input: expand("analysis/merge/{run}.grouped/{sample}.fastq.gz", run=runid, sample=samp_names_grpd)
rule:
name: f"trim_{runid}"
input: expand("analysis/trim/{run}.grouped/{sample}.{rp}.fastq.gz", run=runid, sample=samp_names_grpd, rp=["R1", "R2"])
make_run_rules_locus_demux()