forked from vinnub/MINING-D
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMINING_D.py
623 lines (525 loc) · 30.3 KB
/
MINING_D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
from Bio import SeqIO
from Bio.SeqRecord import SeqRecord
from Bio.Seq import Seq
from Bio import pairwise2
from Bio.pairwise2 import format_alignment
from joblib import Parallel, delayed
import networkx as nx
import click
import numpy as np
from scipy.stats import chisquare
########################################################################################################################
######################################## Some Utility functions ######################################################
########################################################################################################################
def get_extension_stats(initial_mer, direction, cdr3s):
'''
Get counts for the 4 possible extensions corresponding to either left or right extensions of 'initial_mer' and the chi-square p-value.
Returns (p_value, extended_mers, counts_of_extended).
'''
assert direction in ['left', 'right'], 'Direction must be either left or right'
if direction == 'right':
extended_mers = [initial_mer + "A", initial_mer + "G",initial_mer + "C",initial_mer + "T" ]
else:
extended_mers = ["A" + initial_mer ,"G" + initial_mer ,"C" + initial_mer ,"T" + initial_mer ]
count_of_extended = _abundances_of(extended_mers, cdr3s)
p_value = chisquare(list(count_of_extended.values()))[1] if sum(count_of_extended.values())>0 else 1
return p_value, count_of_extended
def _abundances_of(sequences, seq_list):
''' checks the abundance of 4 extended mers '''
abundances = {}
for seq_to_check in sequences:
abundances [seq_to_check] = 0
for a_seq in seq_list:
abundances [seq_to_check] += int( seq_to_check in a_seq)
return abundances
def extensions_for_abundant_kmers(a_CDR3_rep_inst, k_mer_len, num_k_mers_to_extend, alpha, n_cores):
'''
Returns a dictionary where keys are the 'num_k_mers_to_extend' most abundant k-mers in the 'a_CDR3_rep_instance'.
The value for a key are all the extensions corresponding to the key. The computation is done parallely using n_cores.
'''
seqs_to_extend = a_CDR3_rep_inst.get_abundant_k_mers(k_mer_len = k_mer_len, num=num_k_mers_to_extend, )
extensions_list = Parallel(n_jobs = n_cores)(delayed(a_CDR3_rep_inst.extensions_of)(a_seq, alpha= alpha, k_mer_len=k_mer_len) for a_seq in seqs_to_extend)
return dict(zip(seqs_to_extend, extensions_list))
########################################################################################################################
######################################## CDR3 repertoire class #########################################################
########################################################################################################################
class CDR3_rep:
'''
Variables needed= k, num_k_mers, p_value_threshold
'''
def __init__ (self, filename):
def get_unique_cdr3s(a_cdr_file):
return {str(records.seq) for records in SeqIO.parse(a_cdr_file, "fasta")}
self.filename = filename
self.cdr3s = get_unique_cdr3s(self.filename)
# Find the mean relative position in CDR database
def rel_pos_in_cdr3s(self, seq):
rel_pos = list()
for cdr in self.cdr3s:
if seq in cdr: rel_pos.append(cdr.index(seq)/(len(cdr)-len(seq)+1))
return np.mean(rel_pos)
def get_abundant_k_mers(self, k_mer_len , num ):
'''
Return 'num' most abundant k-mers
k_mer_length : Length of k-mer
'''
abundances = {}
for a_cdr3 in self.cdr3s:
for i in range(len(a_cdr3) - k_mer_len + 1):
k_mer = a_cdr3[i:i+k_mer_len]
if k_mer not in abundances:
abundances[k_mer] =1
else:
abundances[k_mer] += 1
sorted_abundances_list = sorted(abundances.items(), key=lambda item: item[1], reverse = True)
abundant_k_mers = [k_mer for k_mer, abundance in sorted_abundances_list[:num]]
return abundant_k_mers
def _get_extnsn_and_suggstns(self, initial_mer, alpha , verbose = False, ):
''' Get one extension from the initial_mer and other sequences to extend.
Returns (one_extension (a string) , other_sequences_to_extend (list of strings))'''
initial_mer_copy = initial_mer
p_value_right = 0
p_value_left = 0
p_value_3 = 1
suggested_extensions = list()
initial_mer_cdr3s = {a_cdr3 for a_cdr3 in self.cdr3s if initial_mer in a_cdr3}
while (min(p_value_right, p_value_left) < alpha):
p_value_right, count_of_extended_right = get_extension_stats(initial_mer, 'right', initial_mer_cdr3s)
p_value_left, count_of_extended_left = get_extension_stats(initial_mer, 'left', initial_mer_cdr3s)
#Print the counts on the left and right
if verbose:
print(f"For Right extension {count_of_extended_right} \nThe p-value is {p_value_right}\n" )
print(f"For Left extension {count_of_extended_left} \nThe p-value is {p_value_left}\n" )
if min(p_value_right, p_value_left) < alpha:
count_of_extended = count_of_extended_right if p_value_right <= p_value_left else count_of_extended_left
all_max = [key for key, value in count_of_extended.items() if value == max(count_of_extended.values())]
if len(all_max) == 1: # if there is only 1 max in counts list
small_counts = {k:v for k,v in count_of_extended.items() if k != all_max[0]}
if sum(small_counts.values()) >0:
p_value_3 = chisquare(list(small_counts.values()))[1]
if verbose: print(f"The remaining counts are: {small_counts} \nThe p-value is {p_value_3}\n" )
if p_value_3 < alpha:
suggested_extensions.append(sorted(small_counts.items(), key = lambda item : item[1], reverse = True)[0][0])
if verbose: print("\nAlso look for extension of %s" %suggested_extensions[-1] )
initial_mer = all_max[0]
if verbose: print("Add %s to the right \n\n" %initial_mer[-1]) if p_value_right <= p_value_left else print("Add %s to the left \n\n" %initial_mer[0])
else:
initial_mer = all_max[0]
if verbose: print("Add %s to the right \n\n" %initial_mer[-1]) if p_value_right <= p_value_left else print("Add %s to the left \n\n" %initial_mer[0])
else: # if there are multiple max in counts list
initial_mer = all_max[0]
if verbose: print("Add %s to the right \n\n" %initial_mer[-1]) if p_value_right <= p_value_left else print("Add %s to the left \n\n" %initial_mer[0])
for i in range(1,len(all_max)):
suggested_extensions.append(all_max[i])
if verbose: print("\nAlso look for extension of %s" %suggested_extensions[-1] )
return((initial_mer, suggested_extensions))
def get_multiple_extensions(self, initial_mer, alpha, verbose = False):
'''
Returns multiple extensions starting from one sequence.'''
extensions = list()
confirmed_extension, suggested_extensions = self._get_extnsn_and_suggstns(initial_mer, alpha = alpha, verbose = verbose)
extensions.append(confirmed_extension)
if len(suggested_extensions)>0:
index = 0
while(index < len(suggested_extensions)):
a_suggestion = suggested_extensions[index]
confirmed_extension, further_suggestions = self._get_extnsn_and_suggstns(a_suggestion, alpha = alpha,verbose = verbose)
extensions.append(confirmed_extension)
if len(further_suggestions)>0: suggested_extensions = suggested_extensions + further_suggestions
index += 1
return extensions
#Shrink sequences
def _shrink_seq(self, starting_seq, alpha , k_mer_len, verbose = False):
seq = starting_seq
while 1:
if len(seq) < k_mer_len : break
truncated_seq_left = seq[1:]
truncated_seq_right = seq[:-1]
p_value_left, count_of_extended_left = get_extension_stats(truncated_seq_left, 'left', self.cdr3s)
p_value_right, count_of_extended_right = get_extension_stats(truncated_seq_right, 'right', self.cdr3s)
if sorted(count_of_extended_left.items(), key = lambda item : item[1], reverse = True)[0][0]!= seq:
if verbose ==True: print ("Delete leftmost letter")
seq = truncated_seq_left
if verbose ==True: print("The remaining sequence is %s" %seq)
continue
if sorted(count_of_extended_right.items(), key = lambda item : item[1], reverse = True)[0][0]!= seq:
if verbose ==True: print ("Remove right-most letter")
seq = truncated_seq_right
if verbose ==True: print("The remaining sequence is %s" %seq)
continue
if max(p_value_right, p_value_left) > alpha:
if verbose ==True: print("Delete right letter") if p_value_right >= p_value_left else print ("Delete left letter ")
seq = truncated_seq_right if p_value_right >= p_value_left else truncated_seq_left
if verbose ==True: print("The remaining sequence is %s" %seq)
else:
break
return seq
def extensions_of(self, a_seq, alpha, k_mer_len ):
'''
Get all processed extensions of the starting sequence 'a_seq'.
Processed here refers to shrinking the extensions and then removing extensions that are subsequences of other extensions.
'''
def shrink_and_remove_subseqs(ext_list, alpha):
a_list = list(np.unique(ext_list))
shrunk_list = [self._shrink_seq(item, alpha = alpha, k_mer_len = k_mer_len) for item in a_list]
shrunk_lens = [len(item) for item in shrunk_list]
sorted_list = [shrunk_list[i] for i in np.argsort(shrunk_lens)]
to_remove = list()
for i in range(len(sorted_list)):
for j in range((i+1), len(sorted_list)):
if sorted_list[i] in sorted_list[j]:
to_remove.append(sorted_list[i])
break
final_list = list (set(sorted_list).difference(set(to_remove)))
return final_list
unprocessed_extensions = self.get_multiple_extensions(a_seq, alpha=alpha)
return shrink_and_remove_subseqs(unprocessed_extensions, alpha = alpha)
########################################################################################################################
#################################### Processing extensions and candidate Ds ##########################################
########################################################################################################################
def filter_unidirectional_extensions(an_extensions_dict, side_alpha):
'''
Takes as input a dictionary of extensions where keys are kmers and values are extensions and filters
those extensions that are unidirectional according to the definition given in the paper.
Returns a new dictionary and does not change the original.
'''
def keep_bidirectional_extensions (starting_seq, extensions):
'''
Takes as input a kmer and its extensions and returns only extensions that are unidirectional w.r.t. the kmer'''
bidir_ext = set()
for ext in extensions:
alignment = pairwise2.align.localms(starting_seq, ext , 1, -100, -100, 0, penalize_end_gaps = False)[0]
left_ext = alignment[3]
right_ext = len(alignment[0]) - alignment[4]
if alignment[0][0] == '-' and alignment[0][-1] == '-':
if ((abs(left_ext-right_ext))/max(left_ext, right_ext)) < side_alpha:
bidir_ext.add(ext)
return bidir_ext
filtered = {}
for kmer, extensions in an_extensions_dict.items():
filtered[kmer] = keep_bidirectional_extensions(kmer, extensions)
return filtered
def graph_from_list(a_list, threshold = 1):
'''
This function returns a networkx graph from a list, where there is an edge between two nodes if and only if the
score between two corresponding extensions in the list is within the specified threshold
'''
score_matrix = np.zeros((len(a_list), len(a_list)))
for i in range(len(a_list)):
for j in range(i + 1,len(a_list)):
alignment = get_alignment(a_list[i], a_list[j] )
score_matrix[i,j] = max(min(len(a_list[i]), len(a_list[j])),8) - alignment[2]
score_matrix[score_matrix > threshold] = 0
score_matrix[score_matrix > 0] = 1
a_graph = nx.from_numpy_matrix(score_matrix)
return a_graph
######################################## Merging Cliques ######################################################
def merge_cliques(a_list, a_cdr3_rep, alpha, k_mer_len, graph_threshold =2, verbose = False):
'''
This function merges the cliques in a graph_from_list formed from a_list with the paramter graph threshold. They are
merged in the following way:
1. Take the intersection of the largest clique in all connected components.
2. Extend the intersection. Make sure the extensions are central in CDRs.
In this version of the function, step3 is not performed. We include all the extensions which we get from an intersection.
3. If the extensions from one intersection are within a score of extensions_threshold, run remove_score_s on those.
Step 3 is included in merge_cliques
4. Repeat for all connected components.
'''
def _align_intersection(indices, a_list, verbose = False):
'''
Function that takes into input a list of indices and a list of sequences, and returns the intersection of the
pairwise alignments
'''
middle_extensions = a_list
alignment = get_alignment(middle_extensions[indices[0]],middle_extensions[indices[1]] )
intersection = alignment[0][alignment[3]:alignment[4]]
if verbose ==True: print( "The first intersection is %s" %intersection)
for i in range(2, len(indices)):
alignment = get_alignment(intersection,middle_extensions[indices[i]] )
intersection = alignment[0][alignment[3]:alignment[4]]
if verbose ==True: print("The %s th intersection is %s" %(i,intersection) )
return intersection
to_remove = list()
to_add= list()
graph = graph_from_list(a_list, graph_threshold )
subgraphs = list(nx.connected_component_subgraphs(graph))
for i, a_subg in enumerate(subgraphs):
if a_subg.number_of_nodes() == 1:
if verbose: print("Only 1 node in subgraph %d" %i)
else:
largest_clique_nodes = sorted(list(nx.find_cliques(a_subg)), key = len)[-1]
if verbose: print(largest_clique_nodes)
intersection = _align_intersection(largest_clique_nodes, a_list)
to_remove.extend([a_list[index] for index in largest_clique_nodes ])
extensions = a_cdr3_rep.extensions_of(intersection, alpha = alpha, k_mer_len = k_mer_len)
ext_in_middle = [ext for ext in extensions if (a_cdr3_rep.rel_pos_in_cdr3s(ext)> 0.2) and (a_cdr3_rep.rel_pos_in_cdr3s(ext)<0.7) ]
to_add.extend(ext_in_middle)
if verbose: print("Removing %d Adding %d" %(len(to_remove), len(to_add)))
return list ( (set(a_list).difference(set(to_remove)) ).union(set(to_add)))
def merge_cliques_iteratively(a_list, a_cdr3_rep, alpha, k_mer_len, graph_threshold = 2, verbose = False):
'''
This function runs the function merge_cliques iteratively until the lengths of the list in two consecutive
iterations are same. Returns a new list.
'''
most_recent = a_list
initial_length = len(most_recent)
i = 1
while(1):
if verbose: print("Doing %d iteration" %i)
temp_list = (merge_cliques(most_recent, a_cdr3_rep=a_cdr3_rep, alpha=alpha, k_mer_len=k_mer_len,
graph_threshold =graph_threshold, verbose = verbose))
#delete extra Gs
temp_db = D_gene_Candidates()
temp_db.add_sequences(temp_list)
temp_db_new = temp_db.del_abund_rand_insrtns()
most_recent = temp_db_new.sequences #a list
if verbose: print("Sequences went from %d to %d" %(initial_length, len(most_recent)))
if len(most_recent) == initial_length:
break
else:
initial_length = len(most_recent)
i += 1
return most_recent
################################# Final Processing (Merge similar candidates etc.) #######################################
def _action (seq1, seq2, verbose = False):
'''
This function tells the operation to be applied to the two sequences that are deemed to be
close to one another in the previous step.
(usually if there is an edge from the function graph_from_list)
If - is only in 1 sequence, keep the bigger sequence.
If - is not present in any sequence, keep the intersection.
If - is present in both, see if the sequences can be merged. If there are nucleotides that
contradict in the two sequences, do not merge. If there are no contradicting nucleotides, merge.
'''
align = pairwise2.align.localms(seq1, seq2 , 1, -100, -100, 0, penalize_end_gaps = False)[0]
if verbose == True: print(align)
first_seq, second_seq, score, start, end = align
if verbose == True: print(format_alignment(*align))
if ('-' in first_seq) and ('-' in second_seq):
to_check = [item for item in range(len(first_seq)) if item not in range(start, end)]
same_nuc = [(first_seq[letter] != '-') and (second_seq[letter] != '-') for letter in to_check]
if any(same_nuc):
#if verbose == True: print('Unmatching letter at position %d' %letter)
if verbose == True: print('Keep the bigger sequence')
return seq1 if len(seq1)>= len(seq2) else seq2
else:
if verbose == True: print('Merge sequences')
return _merge_sequences(first_seq, second_seq, score, start, end)
elif ('-' in first_seq) or ('-' in second_seq):
if verbose == True: print('Keep the bigger sequence')
return seq1 if len(seq1)>= len(seq2) else seq2
else:
if verbose == True: print('Keep the intersection')
return(seq1[start:end])
def _merge_sequences(first_seq, second_seq, score, start, end):
'''
This function merges two sequences. If one sequence has '-' in the alignment and the other
has some nucletotide, it keeps the nucleotide.
--ACCTCTT
TCACCTC-- will return
TCACCTCTT.
This is only done for seuqnces that were deemed appropriate to merge in the function '_action'.
'''
part_one = first_seq[:start] if all([letter == '-' for letter in second_seq[:start] ]) else second_seq[:start]
part_two = first_seq[start:end]
part_three = first_seq[end:] if all([letter == '-' for letter in second_seq[end:] ]) else second_seq[end:]
return ''.join([part_one, part_two, part_three])
def process_edges_in_graph(d_list, threshold = 2, verbose = False):
'''
Draw a graph from a list. Start taking '_actions' on the nodes, edge by edge.
If any edges is processed, skip all the other edges containing the nodes in the already processed
edges.
This can also be done iteratively if needed.
'''
g1 = graph_from_list(d_list, threshold=threshold)
edges = list(g1.edges)
done_nodes = []
to_remove = []
to_add = []
for edge in edges:
if verbose ==True:
print('\n')
print("DONE NODEs", done_nodes)
if any([node in done_nodes for node in edge]):
if verbose ==True: print('Skipping edge ' ,edge)
continue
else:
done_nodes.extend(edge)
if verbose ==True: print('Processing for edge' , edge)
to_remove.extend([d_list[node] for node in edge])
add = _action((*[d_list[node] for node in edge]), verbose=verbose)
if verbose == True: print(add)
to_add.append(add)
return list ( (set(d_list).difference(set(to_remove)) ).union(set(to_add)))
########################################################################################################################
######################################## D genes database class ######################################################
########################################################################################################################
##### Utility functions.
def get_alignment(seq1, seq2):
return pairwise2.align.localms(seq1, seq2 , 1, -100, -100, 0, penalize_end_gaps = False)[0]
def score(seq1, seq2, verbose = False):
'''Function that calculates the score metric between two sequences '''
alignment = get_alignment(seq1, seq2)
if verbose ==True:
print(format_alignment(*alignment))
return max(min(len(seq1), len(seq2)) ,8) - alignment[2]
def extra_symbols_in_smaller(alignment, check_seq2 = False):
'''Takes as input an alignment and gives the extra symbols present in the seq1 (or seq2 if check_seq2 == True).'''
if not check_seq2:
return {alignment[0][i] for i in set(range(len(alignment[0]))).difference(set(range(alignment[3],alignment[4])))}
else:
return {alignment[1][i] for i in set(range(len(alignment[0]))).difference(set(range(alignment[3],alignment[4])))}
##### Class definitions.
class d_segment:
'''Represents a D gene segment.'''
def __init__(self, name = '', seq = ''):
self.name = name
self.seq = seq
def __str__(self):
to_print = ''
for k,v in self.__dict__.items():
to_print += str(k) + ' ' + str(v) + '\n'
return to_print
class D_gene_Candidates:
'''A list of candidate d segments'''
def __init__(self, name = '', segments = None ):
#segments is a list of d_segments
self.name = name
self.segments = segments if segments is not None else []
def __str__(self):
to_print = ''
for a_seg in self.segments:
for k,v in a_seg.__dict__.items():
to_print += str(k) + ' ' + str(v) + '\n'
to_print += '\n'
return to_print
def write_to_fasta(self, file_name):
new_list = list()
for seg in self.segments:
new_list.append( SeqRecord(Seq(seg.seq),id= '%s'%seg.name,description="" ))
SeqIO.write(new_list, file_name, "fasta")
@property
def sequences(self):
return [str(d_seg.seq) for d_seg in self.segments]
@property
def num_seq(self):
return len(self.segments)
@property
def seg_names(self):
return [str(d_seg.name) for d_seg in self.segments]
def add_d_segment(self, d_seg):
self.segments.append(d_seg)
def add_sequences(self, a_seq_list):
for i, a_seq in enumerate(a_seq_list):
self.add_d_segment(d_segment(seq= a_seq, name = 'Cand_' + str(i+1)))
def add_RP_in_cdrs_frm(self, cdr3_rep):
for a_dseg in self.segments:
a_dseg.RP = cdr3_rep.rel_pos_in_cdr3s(a_dseg.seq)
def get_central_d_segments(self, left_th = 0.2, right_th = 0.7):
central_d_segs = []
for a_dseg in self.segments:
if (a_dseg.RP > left_th) and (a_dseg.RP < right_th):
central_d_segs.append(a_dseg)
return D_gene_Candidates(segments=central_d_segs, name = 'central')
def filter_cand_with_motif(self, motif = 'TACTACTAC'):
new_list = [a_seg.seq for a_seg in self.segments if motif not in a_seg.seq]
to_return_db = D_gene_Candidates()
to_return_db.add_sequences(new_list)
return to_return_db
def merge_cliques_in_db(self, a_cdr3_rep, alpha, k_mer_len, graph_threshold = 2, verbose = False):
'''
This method merges the cliques iteratively in the graph on the sequences and returns a new D_gene_Candidates object.
'''
new_seqs = merge_cliques_iteratively(self.sequences, a_cdr3_rep = a_cdr3_rep,
alpha = alpha, k_mer_len = k_mer_len,
graph_threshold=graph_threshold,
verbose = verbose)
to_return_db = D_gene_Candidates()
to_return_db.add_sequences(new_seqs)
return to_return_db
def merge_smlr_seqs(self, graph_threshold = 2, verbose = False):
'''
This method does the final processing on the candidates (merge very similar sequences etc.) returns a new D_gene_Candidates object.
'''
new_seqs = process_edges_in_graph(self.sequences, threshold=graph_threshold, verbose = verbose)
to_return_db = D_gene_Candidates()
to_return_db.add_sequences(new_seqs)
return to_return_db
def del_abund_rand_insrtns(self, symbol_to_del= 'G', g_threshold = 3, verbose = False):
'''
This function returns a new D_gene_candidates object with some segments deleted from the original object.
A segment that is at least a score of g_threshold from another segment of atleast the same length, and the score is only due
to the 'symbol_to_del', is deleted.
eg. AAAAAAAACTCTC
AAAAAAAAGGG
In the above example the second one would be deleted, because it's been observed that random insertions of G are
very common.
'''
a_list = self.segments
lengths = [len(item.seq) for item in a_list]
sorted_list = [a_list[i] for i in np.argsort(lengths)]
to_remove = list()
for i in range(len(sorted_list)):
for j in range(i + 1, len(sorted_list)):
alignment = get_alignment(sorted_list[i].seq, sorted_list[j].seq)
s = score(sorted_list[i].seq, sorted_list[j].seq)
if s >= g_threshold:
if len(sorted_list[j].seq) > len(sorted_list[i].seq):
if len(extra_symbols_in_smaller(alignment).difference({'-',symbol_to_del})) == 0:
to_remove.append(sorted_list[i])
if verbose:
print("Removing %s because of %s" %(sorted_list[i].seq, sorted_list[j].seq))
score(sorted_list[i].seq, sorted_list[j].seq, verbose = True)
break
else:
alignment0 = len(extra_symbols_in_smaller(alignment).difference({'-',symbol_to_del}))
alignment1 = len(extra_symbols_in_smaller(alignment, check_seq2=True).difference({'-',symbol_to_del}))
if alignment0 == 0 or alignment1 ==0:
to_remove.append(sorted_list[i]) if alignment0 ==0 else to_remove.append(sorted_list[j])
if verbose:
print("Removing %s because of %s" %(sorted_list[i].seq, sorted_list[j].seq)) if alignment0 ==0 else print("Removing %s because of %s" %(sorted_list[j].seq, sorted_list[i].seq))
score(sorted_list[i].seq, sorted_list[j].seq, verbose = True)
new_list = list (set(sorted_list).difference(set(to_remove)) )
to_return = D_gene_Candidates(segments=new_list)
return to_return
@click.command()
@click.option('-i', '--input_cdr_file', required=True, help='Input file with consensus CDR3s')
@click.option('-o', '--output_file', required=True, help='Output file to store inferred D genes')
@click.option('-k', default = 10, show_default=True, help='Length of starting k-mers')
@click.option('-n', '--num_k_mers', 'k_mers', default = 300, show_default=True, help='Number of most abundant k-mers to extend')
@click.option('-p','--p_val_th', default = 4.5*10**(-36), show_default=True, help='p-value threshold for the extension procedure')
@click.option('-t', '--n_cores', default = 10, show_default=True,help='Number of cores')
@click.option('--bidir_alpha', default = 0.5, show_default=True,help='Alpha for filtering bidirectional extensions (see paper)')
@click.option('-g', '--cliq_th', default = 2, show_default=True,help='Similarity metric threshold for generating graphs')
def _run_MINING_D(input_cdr_file,output_file, k,k_mers, p_val_th, n_cores, bidir_alpha, cliq_th):
cdr3s = CDR3_rep(input_cdr_file)
# Compute multiple extensions
extensions_dict = extensions_for_abundant_kmers(cdr3s,
num_k_mers_to_extend= k_mers,
n_cores=n_cores,
k_mer_len=k,
alpha= p_val_th)
filtered_extensions = filter_unidirectional_extensions(extensions_dict, side_alpha=bidir_alpha)
# Get a candidate set
candidate_seqs = {ext for kmer in filtered_extensions for ext in filtered_extensions[kmer]}
# Create a D_gene_Candidates object
cand = D_gene_Candidates()
cand.add_sequences(candidate_seqs)
# Add relative positions and keep only central candidates
cand.add_RP_in_cdrs_frm(cdr3s)
cand_central = cand.get_central_d_segments()
# Filtering using merging cliques etc.
cand_central = cand_central.del_abund_rand_insrtns()
cand_after_merging_cliques = cand_central.merge_cliques_in_db(a_cdr3_rep=cdr3s, k_mer_len=k, alpha= p_val_th,
graph_threshold=cliq_th)
cand_after_merging_cliques = cand_after_merging_cliques.\
del_abund_rand_insrtns(symbol_to_del = 'G',g_threshold=2).\
del_abund_rand_insrtns(symbol_to_del = 'C', g_threshold=2)
# Additional filtering for special cases (rare)
final_candidates = cand_after_merging_cliques.merge_smlr_seqs()
final_candidates = final_candidates.filter_cand_with_motif(motif = 'TACTACTAC')
# Write to Fasta
final_candidates.write_to_fasta(output_file)
return final_candidates.num_seq
if __name__ == '__main__':
_run_MINING_D()