-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathmain.py
121 lines (93 loc) · 3.64 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import warnings
import torch
import torch.nn as nn
import networks
import trainer
import logging
import numpy as np
from utils import get_config,set_env,set_logger,set_outdir
from utils import get_dataloader
from utils import get_train_setting,load_checkpoint,get_proc,save_checkpoint
import os
def main(conf):
warnings.filterwarnings("ignore")
best_score = 0.
val_score = 0
val_loss = 0
epoch_start = 0
# dataloader
train_loader,val_loader = get_dataloader(conf)
# model
model = networks.get_model(conf)
model = nn.DataParallel(model).cuda()
if conf.weightfile is not None:
wmodel = networks.get_model(conf)
wmodel = nn.DataParallel(wmodel).cuda()
checkpoint_dict = load_checkpoint(wmodel, conf.weightfile)
if 'best_score' in checkpoint_dict:
print('best score: {}'.format(best_score))
else:
wmodel = model
# training setting
criterion,optimizer,scheduler = get_train_setting(model,conf)
# training and evaluate process for each epoch
train,validate = get_proc(conf)
if conf.resume:
checkpoint_dict = load_checkpoint(model, conf.resume)
epoch_start = checkpoint_dict['epoch']
if 'best_score' in checkpoint_dict:
best_score = checkpoint_dict['best_score']
print('best score: {}'.format(best_score))
print('Resuming training process from epoch {}...'.format(epoch_start))
optimizer.load_state_dict(checkpoint_dict['optimizer'])
scheduler.load_state_dict(checkpoint_dict['scheduler'])
print('Resuming lr scheduler')
print(checkpoint_dict['scheduler'])
if conf.evaluate:
print( validate(val_loader, model,criterion, conf))
return
detach_epoch = conf.epochs + 1
if 'detach_epoch' in conf:
detach_epoch = conf.detach_epoch
start_eval = 0
if 'start_eval' in conf:
start_eval = conf.start_eval
## ------main loop-----
for epoch in range(epoch_start, conf.epochs):
lr = optimizer.param_groups[0]['lr']
logging.info("Epoch: [{} | {} LR: {}".format(epoch+1,conf.epochs,lr))
if epoch == detach_epoch:
model.module.set_detach(False)
tmp_loss = train(train_loader, model, criterion, optimizer, conf,wmodel)
infostr = {'Epoch: {} train_loss: {}'.format(epoch+1,tmp_loss)}
logging.info(infostr)
scheduler.step()
if epoch > start_eval:
with torch.no_grad():
val_score,val_loss,mscore,ascore = validate(val_loader, model,criterion, conf)
comscore = val_score
if 'midlevel' in conf:
if conf.midlevel:
comscore = ascore
is_best = comscore > best_score
best_score = max(comscore,best_score)
infostr = {'Epoch: {:.4f} loss: {:.4f},gs: {:.4f},bs:{:.4f} ,ms:{:.4f},as:{:.4f}'.format(epoch+1,val_loss,val_score,best_score,mscore,ascore)}
logging.info(infostr)
save_checkpoint(
{'epoch': epoch + 1,
'state_dict': model.module.state_dict(),
'optimizer' : optimizer.state_dict(),
'scheduler' : scheduler.state_dict(),
'best_score': best_score
}, is_best, outdir=conf['outdir'])
print('Best val acc: {}'.format(best_score))
return 0
if __name__ == '__main__':
# get configs and set envs
conf = get_config()
set_env(conf)
# generate outdir name
set_outdir(conf)
# Set the logger
set_logger(conf)
main(conf)