-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
172 lines (133 loc) · 7.53 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
import random
import collections
import dgl
import torch
import numpy as np
import pandas as pd
class DataLoaderKGAT(object):
def __init__(self, args, logging):
self.args = args
self.data_name = args.data_name
self.use_pretrain = args.use_pretrain
self.pretrain_embedding_dir = args.pretrain_embedding_dir
self.cf_batch_size = args.cf_batch_size
self.kg_batch_size = args.kg_batch_size
data_dir = os.path.join(args.data_dir, args.data_name)
train_file = os.path.join(data_dir, 'train.txt')
test_file = os.path.join(data_dir, 'test.txt')
kg_file = os.path.join(data_dir, "kg_final.txt")
self.cf_train_data, self.train_user_dict = self.load_cf(train_file)
self.cf_test_data, self.test_user_dict = self.load_cf(test_file)
self.statistic_cf()
kg_data = self.load_kg(kg_file)
self.construct_data(kg_data)
self.print_info(logging)
self.train_graph = self.create_graph(self.kg_train_data, self.n_users_entities)
self.test_graph = self.create_graph(self.kg_test_data, self.n_users_entities)
if self.use_pretrain == 1:
self.load_pretrained_data()
def load_cf(self, filename):
user = []
item = []
user_dict = dict()
lines = open(filename, 'r').readlines()
for l in lines:
tmp = l.strip()
inter = [int(i) for i in tmp.split()]
if len(inter) > 1:
user_id, item_ids = inter[0], inter[1:]
item_ids = list(set(item_ids))
for item_id in item_ids:
user.append(user_id) #user u跟几个item有交互就append几次u_id
item.append(item_id)
user_dict[user_id] = item_ids
user = np.array(user, dtype=np.int32)
item = np.array(item, dtype=np.int32)
return (user, item), user_dict
def statistic_cf(self):
self.n_users = max(max(self.cf_train_data[0]), max(self.cf_test_data[0])) + 1
self.n_items = max(max(self.cf_train_data[1]), max(self.cf_test_data[1])) + 1
self.n_cf_train = len(self.cf_train_data[0]) #交互数目
self.n_cf_test = len(self.cf_test_data[0])
def load_kg(self, filename):
kg_data = pd.read_csv(filename, sep=' ', names=['h', 'r', 't'], engine='python')
kg_data = kg_data.drop_duplicates() #去重
return kg_data
def construct_data(self, kg_data): #将h和t互换(h变t,t变h)后加入到知识图谱中,然后在kg加入user item交互的关系(也是要将互换),互换是因为关系是有方向的。
# plus inverse kg data
n_relations = max(kg_data['r']) + 1
reverse_kg_data = kg_data.copy()
reverse_kg_data = reverse_kg_data.rename({'h': 't', 't': 'h'}, axis='columns')
reverse_kg_data['r'] += n_relations
kg_data = pd.concat([kg_data, reverse_kg_data], axis=0, ignore_index=True, sort=False)
# re-map user id
kg_data['r'] += 2 #加2是因为把user和item的交互关系(采用和被采用算是两种关系)加入,形成ckg
self.n_relations = max(kg_data['r']) + 1
self.n_entities = max(max(kg_data['h']), max(kg_data['t'])) + 1
self.n_users_entities = self.n_users + self.n_entities
# print('****************cf_train_data[0]**************')
# print(self.cf_train_data[0])
self.cf_train_data = (np.array(list(map(lambda d: d + self.n_entities, self.cf_train_data[0]))).astype(np.int32), self.cf_train_data[1].astype(np.int32))
#user_id+实体数目
self.cf_test_data = (np.array(list(map(lambda d: d + self.n_entities, self.cf_test_data[0]))).astype(np.int32), self.cf_test_data[1].astype(np.int32))
# print('****************cf_train_data[0]**************')
# print(self.cf_train_data[0])
self.train_user_dict = {k + self.n_entities: np.unique(v).astype(np.int32) for k, v in self.train_user_dict.items()}
#k是user_id v是与user有交互的items列表
# np.unique()该函数是去除数组中的重复数字,并进行排序之后输出。
self.test_user_dict = {k + self.n_entities: np.unique(v).astype(np.int32) for k, v in self.test_user_dict.items()}
# add interactions to kg data
interact_train_data = pd.DataFrame(np.zeros((self.n_cf_train, 3), dtype=np.int32), columns=['h', 'r', 't'])
interact_train_data['h'] = self.cf_train_data[0]
interact_train_data['t'] = self.cf_train_data[1]
reverse_interact_train_data = pd.DataFrame(np.ones((self.n_cf_train, 3), dtype=np.int32), columns=['h', 'r', 't'])
reverse_interact_train_data['h'] = self.cf_train_data[1]
reverse_interact_train_data['t'] = self.cf_train_data[0]
interact_test_data = pd.DataFrame(np.zeros((self.n_cf_test, 3), dtype=np.int32), columns=['h', 'r', 't'])
interact_test_data['h'] = self.cf_test_data[0]
interact_test_data['t'] = self.cf_test_data[1]
reverse_interact_test_data = pd.DataFrame(np.ones((self.n_cf_test, 3), dtype=np.int32), columns=['h', 'r', 't'])
reverse_interact_test_data['h'] = self.cf_test_data[1]
reverse_interact_test_data['t'] = self.cf_test_data[0]
self.kg_train_data = pd.concat([kg_data, interact_train_data, reverse_interact_train_data], ignore_index=True)
self.kg_test_data = pd.concat([kg_data, interact_test_data, reverse_interact_test_data], ignore_index=True)
self.n_kg_train = len(self.kg_train_data)
self.n_kg_test = len(self.kg_test_data)
# construct kg dict
self.train_kg_dict = collections.defaultdict(list)
self.train_relation_dict = collections.defaultdict(list)
#iterrows() 是在数据框中(DataFrame)的行进行迭代的一个生成器,它返回每行的索引及一个包含行本身的对象。
# print('***************self.kg_train_data*************************')
# print(self.kg_train_data)
for row in self.kg_train_data.iterrows():
h, r, t = row[1]
# print('***************row[1]*************************')
# print(row[1])
# break
self.train_kg_dict[h].append((t, r))
self.train_relation_dict[r].append((h, t))
self.test_kg_dict = collections.defaultdict(list)
self.test_relation_dict = collections.defaultdict(list)
for row in self.kg_test_data.iterrows():
h, r, t = row[1]
self.test_kg_dict[h].append((t, r))
self.test_relation_dict[r].append((h, t))
def print_info(self, logging):
logging.info('n_users: %d' % self.n_users)
logging.info('n_items: %d' % self.n_items)
logging.info('n_entities: %d' % self.n_entities)
logging.info('n_users_entities: %d' % self.n_users_entities)
logging.info('n_relations: %d' % self.n_relations)
logging.info('n_cf_train: %d' % self.n_cf_train)
logging.info('n_cf_test: %d' % self.n_cf_test)
logging.info('n_kg_train: %d' % self.n_kg_train)
logging.info('n_kg_test: %d' % self.n_kg_test)
def create_graph(self, kg_data, n_nodes):
g = dgl.DGLGraph()
g.add_nodes(n_nodes)
g.add_edges(kg_data['t'], kg_data['h'])
g.readonly()
g.ndata['id'] = torch.arange(n_nodes, dtype=torch.long) #给图的顶点设置id属性
g.edata['type'] = torch.LongTensor(kg_data['r']) #给图的边设置关系(type)属性
return g