-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcprofile_main_eval.py
137 lines (116 loc) · 4.22 KB
/
cprofile_main_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from __future__ import print_function, division
import os
os.environ["OMP_NUM_THREADS"] = "1"
import torch
import torch.multiprocessing as mp
import time
import numpy as np
import random
import json
from tqdm import tqdm
import cProfile
from utils.net_util import ScalarMeanTracker
from runners import nonadaptivea3c_val, savn_val
from pandas import Series, DataFrame
def prof_target(target, rank, args, model_to_open, create_shared_model, init_agent,
res_queue, max_val_ep, scene_type):
cProfile.runctx('target(rank, args, model_to_open, create_shared_model, init_agent,res_queue, max_val_ep, scene_type)',
globals(), locals(), 'prof_result/prof{}.prof'.format(rank))
def main_eval(args, create_shared_model, init_agent):
# 设置随即数种子i
np.random.seed(args.seed)
torch.manual_seed(args.seed)
random.seed(args.seed)
if args.gpu_ids == -1:
args.gpu_ids = [-1]
else:
torch.cuda.manual_seed(args.seed)
try:
mp.set_start_method("spawn")
except RuntimeError:
pass
model_to_open = args.load_model
processes = []
res_queue = mp.Queue()
if args.model == "SAVN":
args.learned_loss = True
args.num_steps = 6
target = savn_val
else:
args.learned_loss = False
args.num_steps = args.max_episode_length
target = nonadaptivea3c_val
rank = 0
for scene_type in args.scene_types:
p = mp.Process(
target=prof_target,
args=(
target,
rank,
args,
model_to_open,
create_shared_model,
init_agent,
res_queue,
args.max_val_ep,
scene_type,
),
)
p.start()
processes.append(p)
time.sleep(0.1)
rank += 1
count = 0
end_count = 0
all_train_scalars = ScalarMeanTracker()
# analyze performance for each scene_type
scene_train_scalars = {scene_type:ScalarMeanTracker() for scene_type in args.scene_types}
# analyze performance for each difficulty level
if args.curriculum_learning:
diff_train_scalars = {}
proc = len(args.scene_types)
# pbar = tqdm(total=args.max_val_ep * proc)
try:
while end_count < proc:
train_result = res_queue.get()
# pbar.update(1)
count += 1
print("{} episdoes evaluated...".format(count))
if "END" in train_result:
end_count += 1
continue
# analysis performance for each difficulty split
if args.curriculum_learning:
diff = train_result['difficulty']
if diff not in diff_train_scalars:
diff_train_scalars[diff] = ScalarMeanTracker()
diff_train_scalars[diff].add_scalars(train_result)
# analysis performance for each scene_type
scene_train_scalars[train_result["scene_type"]].add_scalars(train_result)
all_train_scalars.add_scalars(train_result)
all_tracked_means = all_train_scalars.pop_and_reset()
scene_tracked_means = {scene_type: scene_train_scalars[scene_type].pop_and_reset()
for scene_type in args.scene_types}
if args.curriculum_learning:
diff_tracked_means = {diff: diff_train_scalars[diff].pop_and_reset()
for diff in diff_train_scalars}
finally:
for p in processes:
time.sleep(0.1)
p.join()
if args.curriculum_learning:
result = {"all_result":all_tracked_means,
"diff_reult":diff_tracked_means,
"scene_result":scene_tracked_means}
else:
result = {"all_result":all_tracked_means,
"scene_result":scene_tracked_means}
with open(args.results_json, "w") as fp:
json.dump(result, fp, sort_keys=True, indent=4)
print("\n\n\nall_result:\n")
print(Series(all_tracked_means))
print("\n\n\nscene_result:\n")
print(DataFrame(scene_tracked_means))
if args.curriculum_learning:
print("\n\n\ndiff_result:\n")
print(DataFrame(diff_tracked_means))