-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathutils.py
99 lines (77 loc) · 2.49 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
from include import *
from torch.autograd import Variable
import torch
import numpy as np
from process.data_helper import *
def save(list_or_dict,name):
f = open(name, 'w')
f.write(str(list_or_dict))
f.close()
def load(name):
f = open(name, 'r')
a = f.read()
tmp = eval(a)
f.close()
return tmp
def dot_numpy(vector1 , vector2,emb_size = 512):
vector1 = vector1.reshape([-1, emb_size])
vector2 = vector2.reshape([-1, emb_size])
vector2 = vector2.transpose(1,0)
cosV12 = np.dot(vector1, vector2)
return cosV12
def to_var(x, volatile=False):
if torch.cuda.is_available():
x = x.cuda()
return Variable(x, volatile=volatile)
def metric(prob, label, thres = 0.5):
shape = prob.shape
prob_tmp = np.ones([shape[0], shape[1] + 1]) * thres
prob_tmp[:, :shape[1]] = prob
precision , top5 = top_n_np(prob_tmp, label)
return precision, top5
def top_n_np(preds, labels):
n = 5
predicted = np.fliplr(preds.argsort(axis=1)[:, -n:])
top5 = []
re = 0
for i in range(len(preds)):
predicted_tmp = predicted[i]
labels_tmp = labels[i]
for n_ in range(5):
re += np.sum(labels_tmp == predicted_tmp[n_]) / (n_ + 1.0)
re = re / len(preds)
for i in range(n):
top5.append(np.sum(labels == predicted[:, i])/ (1.0*len(labels)))
return re, top5
def prob_to_csv_top5(prob, key_id, name):
CLASS_NAME,_ = load_CLASS_NAME()
prob = np.asarray(prob)
print(prob.shape)
top = np.argsort(-prob,1)[:,:5]
word = []
index = 0
rs = []
for (t0,t1,t2,t3,t4) in top:
word.append(
CLASS_NAME[t0] + ' ' + \
CLASS_NAME[t1] + ' ' + \
CLASS_NAME[t2])
top_k_label_name = r''
label = CLASS_NAME[t0]
score = prob[index][t0]
top_k_label_name += label + ' ' + str(score) + ' '
label = CLASS_NAME[t1]
score = prob[index][t1]
top_k_label_name += label + ' ' + str(score) + ' '
label = CLASS_NAME[t2]
score = prob[index][t2]
top_k_label_name += label + ' ' + str(score) + ' '
label = CLASS_NAME[t3]
score = prob[index][t3]
top_k_label_name += label + ' ' + str(score) + ' '
label = CLASS_NAME[t4]
score = prob[index][t4]
top_k_label_name += label + ' ' + str(score) + ' '
rs.append(top_k_label_name)
index += 1
pd.DataFrame({'key_id':key_id, 'word':rs}).to_csv( '{}.csv'.format(name), index=None)