-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbispecd.m
156 lines (134 loc) · 5.77 KB
/
bispecd.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
function [Bspec,waxis] = bispecd (y, nfft, wind, nsamp, overlap)
%BISPECD Bispectrum estimation using the direct (fft-based) approach.
% [Bspec,waxis] = bispecd (y, nfft, wind, segsamp, overlap)
% y - data vector or time-series
% nfft - fft length [default = power of two > segsamp]
% wind - window specification for frequency-domain smoothing
% if 'wind' is a scalar, it specifies the length of the side
% of the square for the Rao-Gabr optimal window [default=5]
% if 'wind' is a vector, a 2D window will be calculated via
% w2(i,j) = wind(i) * wind(j) * wind(i+j)
% if 'wind' is a matrix, it specifies the 2-D filter directly
% segsamp - samples per segment [default: such that we have 8 segments]
% - if y is a matrix, segsamp is set to the number of rows
% overlap - percentage overlap [default = 50]
% - if y is a matrix, overlap is set to 0.
%
% Bspec - estimated bispectrum: an nfft x nfft array, with origin
% at the center, and axes pointing down and to the right.
% waxis - vector of frequencies associated with the rows and columns
% of Bspec; sampling frequency is assumed to be 1.
% Copyright (c) 1991-2001 by United Signals & Systems, Inc.
% $Revision: 1.8 $
% A. Swami January 20, 1993.
% RESTRICTED RIGHTS LEGEND
% Use, duplication, or disclosure by the Government is subject to
% restrictions as set forth in subparagraph (c) (1) (ii) of the
% Rights in Technical Data and Computer Software clause of DFARS
% 252.227-7013.
% Manufacturer: United Signals & Systems, Inc., P.O. Box 2374,
% Culver City, California 90231.
%
% This material may be reproduced by or for the U.S. Government pursuant
% to the copyright license under the clause at DFARS 252.227-7013.
% --------------------- parameter checks -----------------------------
[ly, nrecs] = size(y);
if (ly == 1) y = y(:); ly = nrecs; nrecs = 1; end
if (exist('nfft') ~= 1) nfft = 128; end
if (exist('overlap') ~= 1) overlap = 50; end
overlap = min(99,max(overlap,0));
if (nrecs > 1) overlap = 0; end
if (exist('nsamp') ~= 1) nsamp = 0; end
if (nrecs > 1) nsamp = ly; end
if (nrecs == 1 & nsamp <= 0)
nsamp = fix(ly/ (8 - 7 * overlap/100));
end
if (nfft < nsamp) nfft = 2^nextpow2(nsamp); end
overlap = fix(nsamp * overlap / 100); % added 2/14
nadvance = nsamp - overlap;
nrecs = fix ( (ly*nrecs - overlap) / nadvance);
% ------------------- create the 2-D window -------------------------
if (exist('wind') ~= 1) wind = 5; end
[m,n] = size(wind);
window = wind;
if (max(m,n) == 1) % scalar: wind is size of Rao-Gabr window
winsize = wind;
if (winsize < 0) winsize = 5; end % the window length L
winsize = winsize - rem(winsize,2) + 1; % make it odd
if (winsize > 1)
mwind = fix (nfft/winsize); % the scale parameter M
lby2 = (winsize - 1)/2;
theta = -lby2:lby2;
opwind = ones(winsize,1) * (theta .^2); % w(m,n)=m^2
opwind = opwind + opwind' + theta' * theta; % m^2 + n^2 + mn
opwind = 1 - (2*mwind/nfft)^2 * opwind; %
hex = ones(winsize,1) * theta; % m
hex = abs(hex) + abs(hex') + abs(hex+hex');
hex = (hex < winsize);
opwind = opwind .* hex;
opwind = opwind * (4 * mwind^2) / (7 * pi^2) ;
else
opwind = 1;
end
elseif (min(m,n) == 1) % 1-D window passed: convert to 2-D
window = window(:);
if (any(imag(window) ~= 0))
% disp(['1-D window has imaginary components: window ignored'])
window = 1;
end
if (any(window < 0))
% disp(['1-D window has negative components: window ignored'])
window = 1;
end
lwind = length(window);
windf = [window(lwind:-1:2); window]; % the full symmetric 1-D
window = [window; zeros(lwind-1,1)];
opwind = (windf * windf') ...
.* hankel(flipud(window), window); % w(m)w(n)w(m+n)
winsize = length(window);
else % 2-D window passed: use directly
winsize = m;
if (m ~= n)
% disp('2-D window is not square: window ignored')
window = 1;
winsize = m;
end
if (rem(m,2) == 0)
% disp('2-D window does not have odd length: window ignored')
window = 1;
winsize = m;
end
opwind = window;
end
% ---------------- accumulate triple products ----------------------
Bspec = zeros(nfft,nfft);
mask = hankel([1:nfft],[nfft,1:nfft-1] ); % the hankel mask (faster)
locseg = [1:nsamp]';
for krec = 1:nrecs
xseg = y(locseg);
Xf = fft(xseg-mean(xseg), nfft)/nsamp;
CXf = conj(Xf);
Bspec = Bspec + (Xf * Xf.') .* ...
reshape(CXf(mask), nfft, nfft);
locseg = locseg + nadvance;
end
Bspec = fftshift(Bspec)/(nrecs);
% ----------------- frequency-domain smoothing ------------------------
if (winsize > 1)
lby2 = (winsize-1)/2;
Bspec = conv2(Bspec,opwind);
Bspec = Bspec(lby2+1:lby2+nfft,lby2+1:lby2+nfft);
end
% ------------ contour plot of magnitude bispectum --------------------
if (rem(nfft,2) == 0)
waxis = ([-nfft/2:(nfft/2-1)]'/nfft)*200; %% diko mou
else
waxis = ([-(nfft-1)/2:(nfft-1)/2]'/nfft)*200; %%diko mou
end
% hold off, clf
% % contour(abs(Bspec),4,waxis,waxis),grid
% contour(waxis,waxis,abs(Bspec),4),grid on
% title('Bispectrum estimated via the direct (FFT) method')
% xlabel('f1'), ylabel('f2')
% set(gcf,'Name','Hosa BISPECD')
return