-
Notifications
You must be signed in to change notification settings - Fork 0
/
engine.py
executable file
·454 lines (363 loc) · 19.7 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
import os
import shutil
import time
import torch.backends.cudnn as cudnn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torchnet as tnt
import torchvision.transforms as transforms
import torch.nn as nn
from util import *
import wandb
torch.cuda.empty_cache()
tqdm.monitor_interval = 0
class Engine(object):
def __init__(self, state={}):
self.state = state
if self._state('use_gpu') is None:
self.state['use_gpu'] = torch.cuda.is_available()
if self._state('image_size') is None:
self.state['image_size'] = 224
if self._state('batch_size') is None:
self.state['batch_size'] = 64
if self._state('workers') is None:
self.state['workers'] = 25
if self._state('device_ids') is None:
self.state['device_ids'] = None
if self._state('evaluate') is None:
self.state['evaluate'] = False
if self._state('start_epoch') is None:
self.state['start_epoch'] = 0
if self._state('max_epochs') is None:
self.state['max_epochs'] = 90
if self._state('epoch_step') is None:
self.state['epoch_step'] = []
# meters
self.state['meter_loss'] = tnt.meter.AverageValueMeter()
# time measure
self.state['batch_time'] = tnt.meter.AverageValueMeter()
self.state['data_time'] = tnt.meter.AverageValueMeter()
# display parameters
if self._state('use_pb') is None:
self.state['use_pb'] = True
if self._state('print_freq') is None:
self.state['print_freq'] = 0
def _state(self, name):
if name in self.state:
return self.state[name]
def on_start_epoch(self, training, model, criterion, data_loader, optimizer=None, display=True):
self.state['meter_loss'].reset()
self.state['batch_time'].reset()
self.state['data_time'].reset()
def on_end_epoch(self, training, model, criterion, data_loader, optimizer=None, display=True):
loss = self.state['meter_loss'].value()[0]
if display:
if training:
print('Epoch: [{0}]\t'
'Loss {loss:.4f}'.format(self.state['epoch'], loss=loss))
else:
print('Test: \t Loss {loss:.4f}'.format(loss=loss))
if self.state['wandb']:
wandb.log({"test loss": loss})
return loss
def on_start_batch(self, training, model, criterion, data_loader, optimizer=None, display=True):
pass
def on_end_batch(self, training, model, criterion, data_loader, optimizer=None, display=True):
# record loss
self.state['loss_batch'] = self.state['loss'].cpu().data
self.state['meter_loss'].add(self.state['loss_batch'])
if display and self.state['print_freq'] != 0 and self.state['iteration'] % self.state['print_freq'] == 0:
loss = self.state['meter_loss'].value()[0]
batch_time = self.state['batch_time'].value()[0]
data_time = self.state['data_time'].value()[0]
if training:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time_current:.3f} ({batch_time:.3f})\t'
'Data {data_time_current:.3f} ({data_time:.3f})\t'
'Loss {loss_current:.4f} ({loss:.4f})'.format(
self.state['epoch'], self.state['iteration'], len(data_loader),
batch_time_current=self.state['batch_time_current'],
batch_time=batch_time, data_time_current=self.state['data_time_batch'],
data_time=data_time, loss_current=self.state['loss_batch'], loss=loss))
else:
print('Test: [{0}/{1}]\t'
'Time {batch_time_current:.3f} ({batch_time:.3f})\t'
'Data {data_time_current:.3f} ({data_time:.3f})\t'
'Loss {loss_current:.4f} ({loss:.4f})'.format(
self.state['iteration'], len(data_loader), batch_time_current=self.state['batch_time_current'],
batch_time=batch_time, data_time_current=self.state['data_time_batch'],
data_time=data_time, loss_current=self.state['loss_batch'], loss=loss))
def on_forward(self, training, model, criterion, data_loader, optimizer=None, display=True, scheduler=None, i=0):
input_var = torch.autograd.Variable(self.state['input'])
target_var = torch.autograd.Variable(self.state['target'])
if not training:
# input_var.volatile = True
# target_var.volatile = True
# # compute output
# self.state['output'] = model(input_var)
# self.state['loss'] = criterion(self.state['output'], target_var)
with torch.no_grad():
# compute output
self.state['output'] = model(input_var)
self.state['loss'] = criterion(self.state['output'], target_var)
if training:
self.state['output'] = model(input_var)
self.state['loss'] = criterion(self.state['output'], target_var)
optimizer.zero_grad()
self.state['loss'].backward()
optimizer.step()
scheduler.step()
def init_learning(self, model, criterion):
if self._state('train_transform') is None:
normalize = transforms.Normalize(mean=model.image_normalization_mean,
std=model.image_normalization_std)
self.state['train_transform'] = transforms.Compose([
MultiScaleCrop(self.state['image_size'], scales=(1.0, 0.875, 0.75, 0.66, 0.5), max_distort=2),
# transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
if self._state('val_transform') is None:
normalize = transforms.Normalize(mean=model.image_normalization_mean,
std=model.image_normalization_std)
self.state['val_transform'] = transforms.Compose([
Warp(self.state['image_size']),
transforms.ToTensor(),
normalize,
])
self.state['best_score'] = {"mAP": 0, "OF1": 0, "CF1": 0}
def learning(self, model, criterion, train_dataset, val_dataset, optimizer=None, scheduler=None):
self.init_learning(model, criterion)
# define train and val transform
train_dataset.transform = self.state['train_transform']
train_dataset.target_transform = self._state('train_target_transform')
val_dataset.transform = self.state['val_transform']
val_dataset.target_transform = self._state('val_target_transform')
# data loading code
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=self.state['batch_size'], shuffle=True,
num_workers=self.state['workers'])
val_loader = torch.utils.data.DataLoader(val_dataset,
batch_size=self.state['batch_size'], shuffle=False,
num_workers=self.state['workers'])
# optionally resume from a checkpoint
if self._state('resume') is not None:
if os.path.isfile(self.state['resume']):
print("=> loading checkpoint '{}'".format(self.state['resume']))
checkpoint = torch.load(self.state['resume'])
self.state['start_epoch'] = checkpoint['epoch']
self.state['best_score'] = checkpoint['best_score']
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(self.state['evaluate'], checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(self.state['resume']))
if self.state['use_gpu']:
train_loader.pin_memory = True
val_loader.pin_memory = True
cudnn.benchmark = True
model = torch.nn.DataParallel(model, device_ids=self.state['device_ids']).cuda()
criterion = criterion.cuda()
if self.state['evaluate']:
self.validate(val_loader, model, criterion)
# test_loader =
# self.validate(test_loader, model, criterion )
return
# TODO define optimizer
for epoch in range(self.state['start_epoch'], self.state['max_epochs']):
self.state['epoch'] = epoch
# lr = self.adjust_learning_rate(optimizer)
# print('lr:',lr)
# train for one epoch
self.train(train_loader, model, criterion, optimizer, epoch, scheduler)
# evaluate on validation set
score = self.validate(val_loader, model, criterion) #({"OF1": OF1, "CF1": CF1, "mAP": map})
# remember best prec@1 and save checkpoint
is_best = score["mAP"] > self.state['best_score']["mAP"]
self.state['best_score']["mAP"] = max(score["mAP"], self.state['best_score']["mAP"])
self.save_checkpoint({
'epoch': epoch + 1,
'arch': self._state('arch'),
'state_dict': model.module.state_dict() if self.state['use_gpu'] else model.state_dict(),
'best_score': self.state['best_score'],
}, is_best)
self.state['best_score']["CF1"] = max(score["CF1"], self.state['best_score']["CF1"])
self.state['best_score']["OF1"] = max(score["OF1"], self.state['best_score']["OF1"])
print(' *** best={best:.3f}'.format(best=self.state['best_score']["mAP"]))
return self.state['best_score']
def train(self, data_loader, model, criterion, optimizer, epoch, scheduler=None):
# switch to train mode
model.train()
# print(model.module.__class__.__name__ )
# if model.module.__class__.__name__ == 'MHA' and epoch==5:
# model.module.weight_share()
self.on_start_epoch(True, model, criterion, data_loader, optimizer)
if self.state['use_pb']:
data_loader = tqdm(data_loader, desc='Training')
end = time.time()
for i, (input, target) in enumerate(data_loader):
# measure data loading time
self.state['iteration'] = i
self.state['data_time_batch'] = time.time() - end
self.state['data_time'].add(self.state['data_time_batch'])
self.state['input'] = input
self.state['target'] = target
self.on_start_batch(True, model, criterion, data_loader, optimizer)
if self.state['use_gpu']:
self.state['target'] = self.state['target'].cuda(non_blocking=True)
self.on_forward(True, model, criterion, data_loader, optimizer, True, scheduler, i)
# measure elapsed time
self.state['batch_time_current'] = time.time() - end
self.state['batch_time'].add(self.state['batch_time_current'])
end = time.time()
# measure accuracy
self.on_end_batch(True, model, criterion, data_loader, optimizer)
self.on_end_epoch(True, model, criterion, data_loader, optimizer)
def validate(self, data_loader, model, criterion):
# switch to evaluate mode
model.eval()
self.on_start_epoch(False, model, criterion, data_loader)
if self.state['use_pb']:
data_loader = tqdm(data_loader, desc='Test')
end = time.time()
for i, (input, target) in enumerate(data_loader):
# measure data loading time
self.state['iteration'] = i
self.state['data_time_batch'] = time.time() - end
self.state['data_time'].add(self.state['data_time_batch'])
self.state['input'] = input
self.state['target'] = target
self.on_start_batch(False, model, criterion, data_loader)
if self.state['use_gpu']:
self.state['target'] = self.state['target'].cuda(non_blocking=True)
self.on_forward(False, model, criterion, data_loader)
# measure elapsed time
self.state['batch_time_current'] = time.time() - end
self.state['batch_time'].add(self.state['batch_time_current'])
end = time.time()
# measure accuracy
self.on_end_batch(False, model, criterion, data_loader)
score = self.on_end_epoch(False, model, criterion, data_loader)
return score #({"OF1": OF1, "CF1": CF1, "mAP": map})
def save_checkpoint(self, state, is_best, filename='checkpoint.pth.tar'):
if is_best:
filename_best = '{}_{}_best.pth.tar'.format(self.state['model'],self.state['wandb'],)
if self._state('save_model_path') is not None:
filename_best = os.path.join(self.state['save_model_path'], filename_best)
# shutil.copyfile(filename, filename_best)
torch.save(state, filename_best)
def adjust_learning_rate(self, optimizer):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr_list = []
decay = 0.1 if sum(self.state['epoch'] == np.array(self.state['epoch_step'])) > 0 else 1.0
for param_group in optimizer.param_groups:
param_group['lr'] = param_group['lr'] * decay
lr_list.append(param_group['lr'])
return np.unique(lr_list)
class MultiLabelMAPEngine(Engine):
def __init__(self, state):
Engine.__init__(self, state)
if self._state('difficult_examples') is None:
self.state['difficult_examples'] = False
self.state['ap_meter'] = AveragePrecisionMeter(self.state['difficult_examples'])
def on_start_epoch(self, training, model, criterion, data_loader, optimizer=None, display=True):
Engine.on_start_epoch(self, training, model, criterion, data_loader, optimizer)
self.state['ap_meter'].reset()
def on_end_epoch(self, training, model, criterion, data_loader, optimizer=None, display=True):
map = 100 * self.state['ap_meter'].value().mean()
loss = self.state['meter_loss'].value()[0]
OP, OR, OF1, CP, CR, CF1 = self.state['ap_meter'].overall()
OP_k, OR_k, OF1_k, CP_k, CR_k, CF1_k = self.state['ap_meter'].overall_topk(3)
if display:
if training:
print('Epoch: [{0}]\t'
'Loss {loss:.4f}\t'
'mAP {map:.3f}'.format(self.state['epoch'], loss=loss, map=map))
print('OP: {OP:.4f}\t'
'OR: {OR:.4f}\t'
'OF1: {OF1:.4f}\t'
'CP: {CP:.4f}\t'
'CR: {CR:.4f}\t'
'CF1: {CF1:.4f}'.format(OP=OP, OR=OR, OF1=OF1, CP=CP, CR=CR, CF1=CF1))
if self.state['wandb']:
wandb.log({"loss": loss, "mAP": map, "OP": OP, "OR": OR, "OF1": OF1, "CP": CP, "CR": CR, "CF1": CF1})
self.state['train_metric'] = ({"OF1": OF1, "CF1": CF1, "mAP": map})
else:
print('Test: \t Loss {loss:.4f}\t mAP {map:.3f}'.format(loss=loss, map=map))
print('OP: {OP:.4f}\t'
'OR: {OR:.4f}\t'
'OF1: {OF1:.4f}\t'
'CP: {CP:.4f}\t'
'CR: {CR:.4f}\t'
'CF1: {CF1:.4f}'.format(OP=OP, OR=OR, OF1=OF1, CP=CP, CR=CR, CF1=CF1))
print('OP_3: {OP:.4f}\t'
'OR_3: {OR:.4f}\t'
'OF1_3: {OF1:.4f}\t'
'CP_3: {CP:.4f}\t'
'CR_3: {CR:.4f}\t'
'CF1_3: {CF1:.4f}'.format(OP=OP_k, OR=OR_k, OF1=OF1_k, CP=CP_k, CR=CR_k, CF1=CF1_k))
if self.state['wandb']:
wandb.log({"t_loss": loss, "t_mAP": map, "t_OP": OP, "t_OR": OR, "t_OF1": OF1, "t_CP": CP, "t_CR": CR, "t_CF1": CF1})
self.state['val_metric'] = ({"OF1": OF1, "CF1": CF1, "mAP": map})
return {"OF1": OF1, "CF1": CF1, "mAP": map}
def on_start_batch(self, training, model, criterion, data_loader, optimizer=None, display=True):
self.state['target_gt'] = self.state['target'].clone()
self.state['target'][self.state['target'] == 0] = 1
self.state['target'][self.state['target'] == -1] = 0
input = self.state['input']
self.state['input'] = input[0]
self.state['name'] = input[1]
def on_end_batch(self, training, model, criterion, data_loader, optimizer=None, display=True):
Engine.on_end_batch(self, training, model, criterion, data_loader, optimizer, display=False)
# measure mAP
self.state['ap_meter'].add(self.state['output'].data, self.state['target_gt'])
if display and self.state['print_freq'] != 0 and self.state['iteration'] % self.state['print_freq'] == 0:
loss = self.state['meter_loss'].value()[0]
batch_time = self.state['batch_time'].value()[0]
data_time = self.state['data_time'].value()[0]
if training:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time_current:.3f} ({batch_time:.3f})\t'
'Data {data_time_current:.3f} ({data_time:.3f})\t'
'Loss {loss_current:.4f} ({loss:.4f})'.format(
self.state['epoch'], self.state['iteration'], len(data_loader),
batch_time_current=self.state['batch_time_current'],
batch_time=batch_time, data_time_current=self.state['data_time_batch'],
data_time=data_time, loss_current=self.state['loss_batch'], loss=loss))
else:
print('Test: [{0}/{1}]\t'
'Time {batch_time_current:.3f} ({batch_time:.3f})\t'
'Data {data_time_current:.3f} ({data_time:.3f})\t'
'Loss {loss_current:.4f} ({loss:.4f})'.format(
self.state['iteration'], len(data_loader), batch_time_current=self.state['batch_time_current'],
batch_time=batch_time, data_time_current=self.state['data_time_batch'],
data_time=data_time, loss_current=self.state['loss_batch'], loss=loss))
class GCNMultiLabelMAPEngine(MultiLabelMAPEngine):
def on_forward(self, training, model, criterion, data_loader, optimizer=None, display=True, scheduler=None, i=0):
feature_var = torch.autograd.Variable(self.state['feature']).float()
target_var = torch.autograd.Variable(self.state['target']).float()
# inp_var = torch.autograd.Variable(self.state['input']).float().detach() # one hot
if not training:
with torch.no_grad():
# compute output
self.state['output'] = model(feature_var)
self.state['loss'] = criterion(self.state['output'], target_var)
if training:
self.state['output'] = model(feature_var)
self.state['loss'] = criterion(self.state['output'], target_var)
optimizer.zero_grad()
self.state['loss'].backward()
nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
optimizer.step()
if scheduler:
scheduler.step()
# print(scheduler.get_last_lr()[0])
def on_start_batch(self, training, model, criterion, data_loader, optimizer=None, display=True):
self.state['target_gt'] = self.state['target'].clone()
self.state['target'][self.state['target'] == 0] = 1
self.state['target'][self.state['target'] == -1] = 0
input = self.state['input']
self.state['feature'] = input[0]
self.state['out'] = input[1]
# self.state['input'] = input[2]