-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathplot_averages.py
47 lines (41 loc) · 1.64 KB
/
plot_averages.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# Create the bar chart for the averaging comparison
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
sns.set(font_scale=1.5)
layer_names = ['GoogleNet Layer 1', 'AlexNet Layer 2',
'OverFeat Average', 'All Layers',
'Best Combination']
results = pd.DataFrame()
results = results.append({
'Layer': layer_names[0],
'F1 Score': 0.85260511883,
'Boosted': True,
}, ignore_index=True)
results = results.append({
'Layer': layer_names[1],
'F1 Score': 0.841242350768,
'Boosted': True,
}, ignore_index=True)
results = results.append({
'Layer': layer_names[2],
'F1 Score': 0.783751493429,
'Boosted': True,
}, ignore_index=True)
results = results.append({
'Layer': layer_names[3],
'F1 Score': 0.870800450958,
'Boosted': True,
}, ignore_index=True)
results = results.append({
'Layer': layer_names[4],
'F1 Score': 0.882036331016,
'Boosted': True,
}, ignore_index=True)
bar = sns.factorplot('Layer', 'F1 Score', data=results,
kind='bar', size=8, legend=False,
order=layer_names)
axes = bar.axes[0, 0]
axes.set_title('Combined Improvement')
axes.set_ylim(0.7, 0.9)
plt.show()