-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwbc_cnt.py
201 lines (151 loc) · 6.23 KB
/
wbc_cnt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import numpy as np
import matplotlib.pyplot as plt
import cv2
import os
import sys
from scipy import spatial
from iou import iou
import time
image1 = cv2.imread(r"C:\Users\Sean Herbert\Desktop\Fall2019\Senior project\BAS19\Images\10x Slide 520030747 second spot in-focus height 84um.tif", 1)
image2 = cv2.imread(r"xi_example.tiff", 1)
image3 = cv2.imread(r"C:\Users\Sean Herbert\Desktop\Fall2019\Senior project\Blood Cell Images from Roche/10x-Slide-520030762-in-focus-height-64um.tif", 1)
image4 = cv2.imread(r"C:\Users\Sean Herbert\Desktop\Fall2019\Senior project\Blood Cell Images from Roche/10x-Slide-520030762-in-focus-height-64um.tif", 1)
def removeSmallRegion(image, size):
removed = 0
_,binary = cv2.threshold(image,0,255, cv2.THRESH_BINARY)
contours, hierarch = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
for i in range(len(contours)):
area = cv2.contourArea(contours[i])
# print(area)
if area < size:
removed +=1
# cv2.imwrite("debug/debug_{}.tif".format(str(k)),image)
# cv2.imshow("Image",image)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
return len(contours)-removed
def test(image):
image_hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
lower_blue = np.array([102,60,218])
upper_blue = np.array([148,106,264])
mask = cv2.inRange(image_hsv, lower_blue, upper_blue)
res = cv2.bitwise_and(image,image, mask= mask)
kernel_cell = np.ones((5,5),np.uint8)
res =cv2.dilate(res, kernel_cell, iterations = 2)
image_hsv = cv2.cvtColor(res, cv2.COLOR_BGR2HSV)
schan = image_hsv[:,:,1]
cv2.imwrite("im.tiff",schan)
cv2.waitKey(0)
cv2.destroyAllWindows()
cnt = removeSmallRegion(schan,100)
print(cnt)
# cnts,hierarchy = cv2.findContours(schan, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # Setup SimpleBlobDetector parameters.
# print(len(cnts))
# gray = cv2.cvtColor(res, cv2.COLOR_BGR2GRAY)
# circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 2.8, 13, param1 = 60, param2 = 32, minRadius = 6, maxRadius = 50)
# cv2.imshow("Im",res)
# cv2.waitKey(0)
# detected_circles = np.uint16(np.around(circles))
# self.rbc_cnt = detected_circles.shape[1];
# return self.rbc_cnt
def process_img(image,i):
# dark_red = np.uint8([[[241,163,176]]])
# dark_red = cv2.cvtColor(dark_red,cv2.COLOR_BGR2HSV)
# print(dark_red)
image_hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
image_s_channel = image_hsv[:,:,1]
cell_image = image_s_channel.copy();
#expiremental
# cv2.imshow('im',image)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
# detector = cv2.SimpleBlobDetector()
# Detect blobs.
# keypoints = detector.detect(res)
# Draw detected blobs as red circles.
# cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS ensures the size of the circle corresponds to the size of blob
# im_with_keypoints = cv2.drawKeypoints(res, keypoints, np.array([]), (0,0,255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
# Show keypoints
# cv2.imshow("Keypoints", im_with_keypoints)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
# image_hsv=cv2.cvtColor(res, cv2.COLOR_BGR2HSV)
# image_s_channel = image_hsv[:,:,1]
# cell_image = image_s_channel.copy()
# cv2.imwrite("debug/Masked.tif",cell_image)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
#
#
# cv2.imwrite("debug/cell_image{}.tif".format(str(i)),image_s_channel)
cell_data = cell_image.reshape((-1, 1))
cell_data = np.float32(cell_data)
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER,30, 0.1)
cell_ret,cell_label,cell_center=cv2.kmeans(cell_data,3,None,criteria,1,cv2.KMEANS_RANDOM_CENTERS)
cell_center = np.uint8(cell_center)
cell_res = cell_center[cell_label.flatten()]
cell = cell_res.reshape((cell_image.shape))
max_v = np.max(cell)
cell[cell==max_v] = 255
cell[cell<max_v] = 0
kernel_cell = np.ones((5,5),np.uint8)
processed_cell = removeSmallRegion(cell, 306.5,i)
processed_cell = cv2.dilate(processed_cell,kernel_cell,iterations = 1)
color = (255, 0, 0)
cnts,hierarchy = cv2.findContours(processed_cell, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# print(cnts)
cell_num = len(cnts)
cell_area = 0
#added for remove double
record = []
tl_ = []
br_ = []
iou_ = []
iou_value = 0
z = 0
for i in range(cell_num):
cell_area += cv2.contourArea(cnts[i])
cnt = cnts[i]
x, y, w, h = cv2.boundingRect(cnt)
tl =(x,y)
# print(tl)
br = (x+w,y+h)
#added for remove double count
if record != []:
tree = spatial.cKDTree(record)
index = tree.query(tl)[1]
center_x = int((tl[0] + br[0]) / 2)
center_y = int((tl[1] + br[1]) / 2)
radius = int((br[0] - tl[0]) / 2)
center_x_knn = int((tl_[index][0] + br_[index][0]) / 2)
center_y_knn = int((tl_[index][1] + br_[index][1]) / 2)
radius_knn = int((br_[index][0] - tl_[index][0]) / 2)
iou_value = iou(radius,radius_knn,center_x,center_y, center_x_knn,center_y_knn)
# print("The KNN for {} is {}".format(tl,tl_[index]))
# print("The iou_value for {} is {}".format(tl,iou_value))
iou_.append(iou_value)
if iou_value > 0.02:
cell_num = cell_num -1
print("removed", tl)
continue
center_x = int((tl[0] + br[0]) / 2)
center_y = int((tl[1] + br[1]) / 2)
center = (center_x, center_y)
radius = int((br[0] - tl[0]) / 2)
# image = cv2.circle(image, center, radius, color, 2)
# print("printed",tl)
record.append(tl)
tl_.append(tl)
br_.append(br)
print("white cell number: ", cell_num)
# cv2.namedWindow("output",cv2.WINDOW_NORMAL)
# image = cv2.resize(image, (1400, 770))
# cv2.imshow("window", image)
# cv2.waitKey(0)
for i in range (50):
imageTemp = image2
test(imageTemp)
# cv2.imshow("Image",image2)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
# process_img(imageTemp,i)