-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBloodCounter.py
378 lines (346 loc) · 15.3 KB
/
BloodCounter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import numpy as np
import cv2
from scipy import spatial
from iou import iou
#This Class has the attributes and methods for counting blood cells (WBC's and RBC's) and getting the WBC : RBC ratio
#This class is called in threads, hence the presence of "self.system.control.stop_threads.is_set()" checks througout (for E-stop)
class BloodCounter():
#constructor is passed the system object
def __init__(self,system):
self.system = system
self.wbc_cnt = 0;
self.rbc_cnt = 0;
self.ratio= 0;
#simple WBC counter that uses color masking technique to isolate WBC's (WBC's have significantly less red and green than RBC's)
def countWBC(self,image):
#this method is called from threads, so it communicates to main thread via a shared queue object
self.system.GUI.queue.put('removePathBorder')#tells main GUI thread to remove pathology border
image_hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)#convert BGR to HSV
image = cv2.cvtColor(image_hsv, cv2.COLOR_HSV2BGR)
#lower and upper bounds for color mask(in HSV)
# lower_blue = np.array([102,60,218])
# upper_blue = np.array([148,106,264])
lower_blue = np.array([200,130,150])
upper_blue = np.array([255,190,210])
mask = cv2.inRange(image, lower_blue, upper_blue)#mask is in HSV
res = cv2.bitwise_and(image,image, mask= mask)#res is in BGR
#dilates the detected WBC's to make distinguising between false positives and real WBC's easier
kernel_cell = np.ones((5,5),np.uint8)
# res =cv2.dilate(res, kernel_cell, iterations = 3)
#convert result to HSV and dislay saturation only to pass to removeSmallRegion
image_hsv = cv2.cvtColor(res, cv2.COLOR_BGR2HSV)
schan = image_hsv[:,:,1]
#remove small region subtracts false positives from the count and returns the corrected count
self.wbc_cnt = self.removeSmallRegion(schan)
return self.wbc_cnt
#removes false positives based on area
def removeSmallRegion(self,image):
min = 9999999
max = -9999999
removed = 0
_,binary = cv2.threshold(image,0,255, cv2.THRESH_BINARY)
#
if (self.system.control.stop_threads.is_set()):
return -1
contours,_ = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
for i in range(len(contours)):
if (self.system.control.stop_threads.is_set()):
return -1
area = cv2.contourArea(contours[i])
if(area >max):
max = area
if(area<min):
min = area
if area < 40:
removed+=1
cv2.drawContours(binary,[contours[i]],0,0,-1)
# print("~~~~~ITERATION {}~~~~~~~~~".format(k))
cv2.imwrite("debug/post_process.tif",binary)
print("min area is: ",min)
print("max area is: ",max)
print ("WBC count is: ", len(contours)-removed)
# return image
return len(contours)-removed
######################## WENT WITH A SIMPLER COLOR MASKING APPROACH ##############################################################
#function that counts WBC's using cv2.kmeans clustering, the problem is that cv2.kmeans clustering produced inconsistent results for the
#same image
# def countWBC(self,slideImage):
#
#
# self.system.GUI.queue.put('removePathBorder')
#
# if (self.system.control.stop_threads.is_set()):
# return -1
#
# image_hsv = cv2.cvtColor(slideImage, cv2.COLOR_BGR2HSV)
#
# if (self.system.control.stop_threads.is_set()):
# return -1
# image_s_channel = image_hsv[:,:,1]
# if (self.system.control.stop_threads.is_set()):
# return -1
# cell_image = image_s_channel
# if (self.system.control.stop_threads.is_set()):
# return -1
# cell_data = cell_image.reshape((-1, 1))
# if (self.system.control.stop_threads.is_set()):
# return -1
# cell_data = np.float32(cell_data)
# if (self.system.control.stop_threads.is_set()):
# return -1
# criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.1)
# if (self.system.control.stop_threads.is_set()):
# return -1
# _,cell_label,cell_center=cv2.kmeans(cell_data,3,None,criteria,1,cv2.KMEANS_RANDOM_CENTERS)
# if (self.system.control.stop_threads.is_set()):
# return -1
# cell_center = np.uint8(cell_center)
# if (self.system.control.stop_threads.is_set()):
# return -1
# cell_res = cell_center[cell_label.flatten()]
# if (self.system.control.stop_threads.is_set()):
# return -1
# cell = cell_res.reshape((cell_image.shape))
# if (self.system.control.stop_threads.is_set()):
# return -1
# max_v = np.max(cell)
# if (self.system.control.stop_threads.is_set()):
# return -1
# cell[cell==max_v] = 255
# if (self.system.control.stop_threads.is_set()):
# return -1
# cell[cell<max_v] = 0
# if (self.system.control.stop_threads.is_set()):
# return -1
# if (self.system.control.stop_threads.is_set()):
# return -1
# kernel_cell = np.ones((5,5),np.uint8)
# if (self.system.control.stop_threads.is_set()):
# return -1
# processed_cell = self.removeSmallRegion(cell)
# if (self.system.control.stop_threads.is_set()):
# return -1
#
#
#
#
# processed_cell = cv2.dilate(processed_cell,kernel_cell,iterations = 1)
#
# if (self.system.control.stop_threads.is_set()):
# return -1
# cnts,_ = cv2.findContours(processed_cell, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# if (self.system.control.stop_threads.is_set()):
# return -1
# cell_num = len(cnts)
# if (self.system.control.stop_threads.is_set()):
# return -1
# #get rid of these after testing
# # print("There are {} wbc's before remove double".format(cell_num))
# color = (255, 0, 0)
# for i in range(cell_num):
# cnt = cnts[i]
# if (self.system.control.stop_threads.is_set()):
# return -1
# x, y, w, h = cv2.boundingRect(cnt)
# if (self.system.control.stop_threads.is_set()):
# return -1
# slideImage = cv2.rectangle(slideImage, (x, y), (x+w, y+h), color, 2)
# if (self.system.control.stop_threads.is_set()):
# return -1
# #
# # # cv2.namedWindow("output",cv2.WINDOW_NORMAL)
# # cv2.imwrite("/home/pi/BAS/testingWBC/After/___{}___{}.tif".format(cell_num,xi),slideImage)
# # cv2.imwrite("/home/pi/BAS/testingWBC/processed_cell_for_{}___{}.tif".format(cell_num,xi),processed_cell)
# # image = cv2.resize(slideImage, (1400, 770))
# #
# # cv2.imshow("window", image)
# #
# # cv2.waitKey(0)
# #
# # cv2.destroyAllWindows()
#
#
# #added for remove double
# record = []
# tl_ = []
# br_ = []
# iou_ = []
# iou_value = 0
#
# for i in range(cell_num):
# # if(self.system.control.stop_threads.is_set()):
# # return -1
# if (self.system.control.stop_threads.is_set()):
# return -1
# cnt = cnts[i]
# if (self.system.control.stop_threads.is_set()):
# return -1
# x, y, w, h = cv2.boundingRect(cnt)
# if (self.system.control.stop_threads.is_set()):
# return -1
# tl =(x,y)
# if (self.system.control.stop_threads.is_set()):
# return -1
# br = (x+w,y+h)
# if (self.system.control.stop_threads.is_set()):
# return -1
#
# #added for remove double count
# if record != []:
# tree = spatial.cKDTree(record)
# if (self.system.control.stop_threads.is_set()):
# return -1
# index = tree.query(tl)[1]
# if (self.system.control.stop_threads.is_set()):
# return -1
# center_x = int((tl[0] + br[0]) / 2)
# if (self.system.control.stop_threads.is_set()):
# return -1
# center_y = int((tl[1] + br[1]) / 2)
# if (self.system.control.stop_threads.is_set()):
# return -1
# radius = int((br[0] - tl[0]) / 2)
# if (self.system.control.stop_threads.is_set()):
# return -1
# center_x_knn = int((tl_[index][0] + br_[index][0]) / 2)
# if (self.system.control.stop_threads.is_set()):
# return -1
# center_y_knn = int((tl_[index][1] + br_[index][1]) / 2)
# if (self.system.control.stop_threads.is_set()):
# return -1
# radius_knn = int((br_[index][0] - tl_[index][0]) / 2)
# if (self.system.control.stop_threads.is_set()):
# return -1
# iou_value = iou(radius,radius_knn,center_x,center_y, center_x_knn,center_y_knn)
# if (self.system.control.stop_threads.is_set()):
# return -1
# iou_.append(iou_value)
# if (self.system.control.stop_threads.is_set()):
# return -1
# if iou_value > 0.02:
# if (self.system.control.stop_threads.is_set()):
# return -1
# cell_num = cell_num -1
# # print("~~~~~~~~~~~~~~~~~~~~~~~REMOVED~~~~~~~~~~~~~~~~~~~")
# continue
#
# record.append(tl)
# if (self.system.control.stop_threads.is_set()):
# return -1
# tl_.append(tl)
# if (self.system.control.stop_threads.is_set()):
# return -1
# br_.append(br)
# if (self.system.control.stop_threads.is_set()):
# return -1
# self.wbc_cnt = cell_num;
# # print("There are {} wbc's after remove double".format(cell_num))
# return self.wbc_cnt
#
#
# #removes double counted WBC's using Intersection Over Union and K-nearest Neighbor (to use it, simply pass it the result from
# #countWBC function)
# def removeDouble(self,cell_num):
#
# record = []
# tl_ = []
# br_ = []
# iou_ = []
# iou_value = 0
#
# for i in range(cell_num):
#
# if (self.system.control.stop_threads.is_set()):
# return -1
# cnt = cnts[i]
# if (self.system.control.stop_threads.is_set()):
# return -1
# x, y, w, h = cv2.boundingRect(cnt)
# if (self.system.control.stop_threads.is_set()):
# return -1
# tl =(x,y)
# if (self.system.control.stop_threads.is_set()):
# return -1
# br = (x+w,y+h)
# if (self.system.control.stop_threads.is_set()):
# return -1
#
#
# if record != []:
# tree = spatial.cKDTree(record)
# if (self.system.control.stop_threads.is_set()):
# return -1
# index = tree.query(tl)[1]
# if (self.system.control.stop_threads.is_set()):
# return -1
# center_x = int((tl[0] + br[0]) / 2)
# if (self.system.control.stop_threads.is_set()):
# return -1
# center_y = int((tl[1] + br[1]) / 2)
# if (self.system.control.stop_threads.is_set()):
# return -1
# radius = int((br[0] - tl[0]) / 2)
# if (self.system.control.stop_threads.is_set()):
# return -1
# center_x_knn = int((tl_[index][0] + br_[index][0]) / 2)
# if (self.system.control.stop_threads.is_set()):
# return -1
# center_y_knn = int((tl_[index][1] + br_[index][1]) / 2)
# if (self.system.control.stop_threads.is_set()):
# return -1
# radius_knn = int((br_[index][0] - tl_[index][0]) / 2)
# if (self.system.control.stop_threads.is_set()):
# return -1
# iou_value = iou(radius,radius_knn,center_x,center_y, center_x_knn,center_y_knn)
# if (self.system.control.stop_threads.is_set()):
# return -1
# iou_.append(iou_value)
# if (self.system.control.stop_threads.is_set()):
# return -1
# if iou_value > 0.02:
# if (self.system.control.stop_threads.is_set()):
# return -1
# cell_num = cell_num -1
# # print("~~~~~~~~~~~~~~~~~~~~~~~REMOVED~~~~~~~~~~~~~~~~~~~")
# continue
#
# record.append(tl)
# if (self.system.control.stop_threads.is_set()):
# return -1
# tl_.append(tl)
# if (self.system.control.stop_threads.is_set()):
# return -1
# br_.append(br)
# if (self.system.control.stop_threads.is_set()):
# return -1
# self.wbc_cnt = cell_num;
# # print("There are {} wbc's after remove double".format(cell_num))
# return self.wbc_cnt
#counts RBC's using Hough Transform (cv2.HoughCircles).
def countRBC(self,slideImage):
if (self.system.control.stop_threads.is_set()):
print("no image")
return -1
gray = cv2.cvtColor(slideImage, cv2.COLOR_BGR2GRAY)
if (self.system.control.stop_threads.is_set()):
return -1
circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 2.8, 13, param1 = 60, param2 = 32, minRadius = 6, maxRadius = 15)
detected_circles = np.uint16(np.around(circles))
#the following draws circles around the detected circles and saves the resultant image (useful for debugging)
#
# for i in detected_circles[0,:]:
# # draw the outer circle
# cv2.circle(gray,(i[0],i[1]),i[2],(0,255,0),2)
# # draw the center of the circle
# cv2.circle(gray,(i[0],i[1]),2,(0,0,255),3)
# cv2.imwrite("cirlces.tif",gray)
self.rbc_cnt = detected_circles.shape[1]
return self.rbc_cnt
#Calculates WBC to RBC ratio and formats for display on GUI
def calcRatio(self):
if((self.system.control.stop_threads.is_set())):
return -1
self.ratio = self.wbc_cnt/(self.rbc_cnt - self.wbc_cnt)
self.ratio ="{0:.5f}".format(self.ratio)
self.ratio = float(self.ratio)
return self.ratio