-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathprepare_train_test.py
175 lines (150 loc) · 6.98 KB
/
prepare_train_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
import sys
import argparse
import numpy as np
from tqdm import tqdm
import pandas as pd
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type=str, default="snli") #snli, mnli
parser.add_argument("--create_data", action="store_true")
parser.add_argument("--filter_repetitions", action="store_true")
#For merging
parser.add_argument("--merge_data", action="store_true")
parser.add_argument("--merge_single", action="store_true")
parser.add_argument("--split", type=str, default="train")
parser.add_argument("--input_prefix", type=str, default="dummy")
#for shuffled evaluation
parser.add_argument("--shuffle", action="store_true")
args = parser.parse_args()
tqdm.pandas()
args.dataset = args.dataset.lower()
s1,s2 = 'sentence1', 'sentence2'
index_col = 'pairID'
gold_label = 'gold_label'
data_labels = ['entailment', 'neutral', 'contradiction']
if args.dataset == 'snli':
input_path = './external/esnli/dataset'
filenames = {
'dev': 'esnli_dev.csv',
'train': 'esnli_train.csv',
'test': 'esnli_test.csv'
}
sep = ','
data_index_col = 'pairID'
data_gold_label = 'gold_label'
quotechar = '"'
quoting = 0
data_s1,data_s2 = 'Sentence1', 'Sentence2'
label_map = None
skip_segregation = False
explanation_available = True
e1 = 'Explanation_1'
output_root = './dataset_snli'
elif args.dataset == 'mnli':
input_path = './external/MNLI'
filenames = {
'train': 'train.tsv',
'dev': 'dev_matched.tsv',
'dev_mm': 'dev_mismatched.tsv'
}
sep = '\t'
data_index_col = 'pairID'
data_gold_label = 'gold_label'
quotechar = None
quoting = 3
data_s1,data_s2 = 'sentence1', 'sentence2'
label_map = None
skip_segregation = True
explanation_available = False
output_root = './dataset_mnli'
else:
raise ValueError("dataset not supported")
if args.create_data:
data = {}
for split in filenames:
data[split] = pd.read_csv(os.path.join(input_path, filenames[split]),
index_col=data_index_col, sep=sep, quotechar=quotechar, quoting=quoting)
data[split] = data[split].rename(columns={data_s1:s1, data_s2:s2, data_gold_label:gold_label})
data[split].index.name = index_col
if label_map: data[split][gold_label] = data[split][gold_label].apply(label_map)
print ('\n Split {} Len {}'.format(split, len(data[split])))
print (data[split][gold_label].value_counts())
if args.filter_repetitions and split == "train" and args.dataset == 'snli':
print ("Filtering repetitions")
def has_repetition(r):
exp = r[e1].lower()
p = r[s1].lower()
h = r[s2].lower()
return True if p in exp or h in exp else False
cond = data[split].apply(has_repetition, axis=1)
print ("#cases with repetitions:", cond.sum())
data[split] = data[split][cond==False]
print ('Updated Split {} Len {}'.format(split, len(data[split])))
print (data[split][gold_label].value_counts())
cond = data[split].apply(has_repetition, axis=1)
print ("#cases with repetitions:", cond.sum())
label = "all"
examples = data[split]
dpath = os.path.join(output_root, label)
os.makedirs(dpath) if not os.path.exists(dpath) else None
fname = os.path.join(dpath, '{}_data.csv'.format(split))
examples.to_csv(fname)
if not skip_segregation:
for label in data_labels:
for split in filenames:
dpath = os.path.join(output_root, label)
os.makedirs(dpath) if not os.path.exists(dpath) else None
fname = os.path.join(dpath, '{}_data.csv'.format(split))
examples = data[split][data[split][gold_label] == label]
print ('Saving {} | {} | {} examples'.format(label, split, len(examples)))
examples.to_csv(fname)
def generate_prompt(r):
inp = 'Premise: {} Hypothesis: {}'.format(r[s1], r[s2])
return inp
if args.create_data:
labels = ["all"]
if not skip_segregation: labels.extend(data_labels)
for label in labels:
dpath = os.path.join(output_root, label)
for split in filenames:
fname = os.path.join(dpath, '{}_data.csv'.format(split))
examples = pd.read_csv(fname, index_col=index_col)
print ('Processing {} | {} | {} examples'.format(label, split, len(examples)))
print (examples[gold_label].value_counts())
examples['input'] = examples[[s1, s2]].progress_apply(generate_prompt, axis=1)
columns_to_write = ['input']
if explanation_available:
examples['target'] = examples[e1]
columns_to_write.append('target')
print ('Writing')
fname = os.path.join(dpath, '{}.tsv'.format(split))
examples[columns_to_write].to_csv(fname, sep='\t')
if args.merge_data:
if args.merge_single:
suffixes = ["all"]
output_suffix = "_all"
else:
suffixes = ["entailment", "contradiction", "neutral"]
output_suffix = ""
split = args.split
fname_csv = os.path.join(output_root, 'all', '{}_data.csv'.format(split))
d_csv = pd.read_csv(fname_csv, index_col=index_col)
for s in suffixes:
fname_tsv = os.path.join(output_root, 'all', '{}{}_{}.tsv'.format(args.input_prefix, s, split))
d_tsv = pd.read_csv(fname_tsv, index_col=index_col, sep='\t')
d_csv['{}_explanation'.format(s)] = d_tsv['Generated_Explanation']
print (d_csv.head(5))
fname = os.path.join(output_root, 'all', '{}{}_{}{}.csv'.format(args.input_prefix, split, "merged", output_suffix))
d_csv.to_csv(fname)
if args.shuffle:
split = args.split
fname = os.path.join(output_root, 'all', '{}{}_{}.csv'.format(args.input_prefix, split, "merged"))
d_csv = pd.read_csv(fname, index_col=index_col)
d_csv_shuffled = d_csv.copy()
for l in ["entailment", "contradiction", "neutral"]:
d_csv_shuffled['{}_explanation'.format(l)] = np.random.choice(
d_csv_shuffled['{}_explanation'.format(l)].values,
len(d_csv_shuffled), replace=False)
fname_csv_out = os.path.join(output_root, 'all', '{}shuffled{}_{}.csv'.format(args.input_prefix, split, "merged"))
d_csv_shuffled.to_csv(fname_csv_out)