-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocessor.py
120 lines (96 loc) · 3.92 KB
/
preprocessor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# import re
# import pandas as pd
# def preprocess(data):
# pattern = '\d{1,2}/\d{1,2}/\d{2,4},\s\d{1,2}:\d{2}\s-\s'
# messages = re.split(pattern, data)[1:]
# dates = re.findall(pattern, data)
# df = pd.DataFrame({'user_message': messages, 'message_date': dates})
# # convert message_date type
# df['message_date'] = pd.to_datetime(df['message_date'], format='%d/%m/%Y, %H:%M - ')
# df.rename(columns={'message_date': 'date'}, inplace=True)
# users = []
# messages = []
# for message in df['user_message']:
# entry = re.split('([\w\W]+?):\s', message)
# if entry[1:]: # user name
# users.append(entry[1])
# messages.append(" ".join(entry[2:]))
# else:
# users.append('group_notification')
# messages.append(entry[0])
# df['user'] = users
# df['message'] = messages
# df.drop(columns=['user_message'], inplace=True)
# df['only_date'] = df['date'].dt.date
# df['year'] = df['date'].dt.year
# df['month_num'] = df['date'].dt.month
# df['month'] = df['date'].dt.month_name()
# df['day'] = df['date'].dt.day
# df['day_name'] = df['date'].dt.day_name()
# df['hour'] = df['date'].dt.hour
# df['minute'] = df['date'].dt.minute
# period = []
# for hour in df[['day_name', 'hour']]['hour']:
# if hour == 23:
# period.append(str(hour) + "-" + str('00'))
# elif hour == 0:
# period.append(str('00') + "-" + str(hour + 1))
# else:
# period.append(str(hour) + "-" + str(hour + 1))
# df['period'] = period
# return df
import re
import pandas as pd
def preprocess(data):
# Pattern to extract date and time in the WhatsApp format
pattern = '\d{1,2}/\d{1,2}/\d{2,4},\s\d{1,2}:\d{2}\s-\s'
# Extract messages and dates using regex
messages = re.split(pattern, data)[1:]
dates = re.findall(pattern, data)
# Create a DataFrame with messages and corresponding dates
df = pd.DataFrame({'user_message': messages, 'message_date': dates})
# Convert message_date to datetime with error handling
df['message_date'] = pd.to_datetime(df['message_date'], format='%d/%m/%Y, %H:%M - ', errors='coerce')
# Rename the message_date column to 'date' for consistency
df.rename(columns={'message_date': 'date'}, inplace=True)
# Handle user and message separation from the 'user_message' column
users = []
messages = []
for message in df['user_message']:
# Extract the username and the actual message content
entry = re.split('([\w\W]+?):\s', message)
if entry[1:]: # Check if there's a valid user and message
users.append(entry[1]) # Add the user
messages.append(" ".join(entry[2:])) # Add the message
else:
# For system messages or group notifications
users.append('group_notification')
messages.append(entry[0])
# Add user and message columns to the DataFrame
df['user'] = users
df['message'] = messages
# Drop the original 'user_message' column
df.drop(columns=['user_message'], inplace=True)
# Drop rows where the date couldn't be parsed (NaT values)
df.dropna(subset=['date'], inplace=True)
# Add additional date and time-related columns
df['only_date'] = df['date'].dt.date
df['year'] = df['date'].dt.year
df['month_num'] = df['date'].dt.month
df['month'] = df['date'].dt.month_name()
df['day'] = df['date'].dt.day
df['day_name'] = df['date'].dt.day_name()
df['hour'] = df['date'].dt.hour
df['minute'] = df['date'].dt.minute
# Generate time period ranges
period = []
for hour in df['hour']:
if hour == 23:
period.append(f"{hour}-00")
elif hour == 0:
period.append("00-01")
else:
period.append(f"{hour}-{hour+1}")
# Add the period column to the DataFrame
df['period'] = period
return df