-
Notifications
You must be signed in to change notification settings - Fork 32
/
train_toy_v2.py
133 lines (107 loc) · 4.47 KB
/
train_toy_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import mxnet as mx
from mxnet.gluon.data.vision import transforms
from functools import partial
from gluoncv.utils import LRScheduler
from easydict import EasyDict as edict
from albumentations import Compose, Flip
from adaptis.engine.trainer import AdaptISTrainer, init_proposals_head
from adaptis.model.toy.models import get_unet_model
from adaptis.model.losses import NormalizedFocalLossSigmoid, NormalizedFocalLossSoftmax, AdaptISProposalsLossIoU
from adaptis.model.metrics import AdaptiveIoU
from adaptis.data.toy import ToyDataset
from adaptis.utils.exp import init_experiment
from adaptis.utils.log import logger
def add_exp_args(parser):
parser.add_argument('--dataset-path', type=str, help='Path to the dataset')
return parser
def init_model():
model_cfg = edict()
model_cfg.syncbn = True
model_cfg.input_normalization = {
'mean': [0.5, 0.5, 0.5],
'std': [0.5, 0.5, 0.5]
}
model_cfg.input_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(model_cfg.input_normalization['mean'],
model_cfg.input_normalization['std']),
])
if args.ngpus > 1 and model_cfg.syncbn:
norm_layer = partial(mx.gluon.contrib.nn.SyncBatchNorm, num_devices=args.ngpus)
else:
norm_layer = mx.gluon.nn.BatchNorm
model = get_unet_model(norm_layer)
model.initialize(mx.init.Xavier(rnd_type='gaussian', magnitude=1), ctx=mx.cpu(0))
return model, model_cfg
def train(model, model_cfg, args, train_proposals, start_epoch=0):
loss_cfg = edict()
loss_cfg.instance_loss = NormalizedFocalLossSigmoid(alpha=0.50, gamma=2)
loss_cfg.instance_loss_weight = 1.0 if not train_proposals else 0.0
if not train_proposals:
num_epochs = 160
num_points = 12
loss_cfg.segmentation_loss = NormalizedFocalLossSoftmax(ignore_label=-1, gamma=1)
loss_cfg.segmentation_loss_weight = 0.75
else:
num_epochs = 10
num_points = 32
loss_cfg.proposals_loss = AdaptISProposalsLossIoU(args.batch_size)
loss_cfg.proposals_loss_weight = 1.0
args.val_batch_size = args.batch_size
args.input_normalization = model_cfg.input_normalization
train_augmentator = Compose([
Flip()
], p=1.0)
trainset = ToyDataset(
args.dataset_path,
split='train',
num_points=num_points,
augmentator=train_augmentator,
with_segmentation=True,
points_from_one_object=train_proposals,
input_transform=model_cfg.input_transform,
epoch_len=10000
)
valset = ToyDataset(
args.dataset_path,
split='test',
augmentator=None,
num_points=num_points,
with_segmentation=True,
points_from_one_object=train_proposals,
input_transform=model_cfg.input_transform
)
optimizer_params = {
'learning_rate': 5e-4,
'beta1': 0.9, 'beta2': 0.999, 'epsilon': 1e-8
}
if not train_proposals:
lr_scheduler = partial(LRScheduler, mode='cosine',
baselr=optimizer_params['learning_rate'],
nepochs=num_epochs)
else:
lr_scheduler = partial(LRScheduler, mode='cosine',
baselr=optimizer_params['learning_rate'],
nepochs=num_epochs)
trainer = AdaptISTrainer(args, model, model_cfg, loss_cfg,
trainset, valset,
optimizer='adam',
optimizer_params=optimizer_params,
lr_scheduler=lr_scheduler,
checkpoint_interval=40 if not train_proposals else 5,
image_dump_interval=200 if not train_proposals else -1,
train_proposals=train_proposals,
hybridize_model=not train_proposals,
metrics=[AdaptiveIoU()])
logger.info(f'Starting Epoch: {start_epoch}')
logger.info(f'Total Epochs: {num_epochs}')
for epoch in range(start_epoch, num_epochs):
trainer.training(epoch)
trainer.validation(epoch)
if __name__ == '__main__':
args = init_experiment('toy_v2', add_exp_args, script_path=__file__)
model, model_cfg = init_model()
train(model, model_cfg, args, train_proposals=False,
start_epoch=args.start_epoch)
init_proposals_head(model, args.ctx)
train(model, model_cfg, args, train_proposals=True)