forked from BUPT-GAMMA/GammaGL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
142 lines (119 loc) · 4.72 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import numpy as np
import functools
from sklearn.metrics import f1_score
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.multiclass import OneVsRestClassifier
from sklearn.preprocessing import normalize, OneHotEncoder
from gammagl.datasets import Planetoid,Amazon
import tensorlayerx as tlx
def repeat(n_times):
def decorator(f):
@functools.wraps(f)
def wrapper(*args, **kwargs):
results = [f(*args, **kwargs) for _ in range(n_times)]
statistics = {}
for key in results[0].keys():
values = [r[key] for r in results]
statistics[key] = {'mean': np.mean(values), 'std': np.std(values)}
print_statistics(statistics, f.__name__)
return statistics
return wrapper
return decorator
def prob_to_one_hot(y_pred):
ret = np.zeros(y_pred.shape, np.bool_)
indices = np.argmax(y_pred, axis=1)
for i in range(y_pred.shape[0]):
ret[i][indices[i]] = True
return ret
def print_statistics(statistics, function_name):
print(f'(E) | {function_name}:', end=' ')
for i, key in enumerate(statistics.keys()):
mean = statistics[key]['mean']
std = statistics[key]['std']
print(f'{key}={mean:.4f}+-{std:.4f}', end='')
if i != len(statistics.keys()) - 1:
print(',', end=' ')
else:
print()
@repeat(1)
def linear_clf(embeddings, y, train_mask, test_mask, degree, dataset):
X = tlx.convert_to_numpy(embeddings)
Y = tlx.convert_to_numpy(y)
Y = Y.reshape(-1, 1)
onehot_encoder = OneHotEncoder(categories='auto').fit(Y)
Y = onehot_encoder.transform(Y).toarray().astype(np.bool_)
X = normalize(X, norm='l2')
X_train = X[train_mask]
X_test = X[test_mask]
y_train = Y[train_mask]
y_test = Y[test_mask]
degree = degree[test_mask]
logreg = LogisticRegression(solver='liblinear')
c = 2.0 ** np.arange(-10, 10)
clf = GridSearchCV(estimator=OneVsRestClassifier(logreg),
param_grid=dict(estimator__C=c), n_jobs=8, cv=5,
verbose=0)
clf.fit(X_train, y_train)
y_pred = clf.predict_proba(X_test)
y_pred = prob_to_one_hot(y_pred)
acc = (np.argmax(y_test, axis=1) == np.argmax(y_pred, axis=1)).astype(float)
degree_dict = {}
for i in range(degree.shape[0]):
if degree[i] not in degree_dict:
degree_dict[degree[i]] = []
degree_dict[degree[i]].append(acc[i])
for d,l in degree_dict.items():
degree_dict[d] = np.mean(l)
bias = np.var(list(degree_dict.values()))
mean = np.mean(list(degree_dict.values()))
micro = f1_score(y_test, y_pred, average="micro")
macro = f1_score(y_test, y_pred, average="macro")
return {'F1Mi': micro, 'F1Ma': macro, 'Mean':mean, 'Bias':bias}
def load(name, mode,path):
assert name in ['cora', 'citeseer', 'photo', 'computers']
assert mode in ['full', 'part']
if name == 'cora':
dataset = Planetoid(root=path, name='cora')
#idx_test = idx_test[1400:2400]
elif name == 'citeseer':
dataset = Planetoid(root=path, name='citeseer')
#idx_test = idx_test[:1000]
elif name == 'photo':
dataset = Amazon(root=path, name='photo')
#idx_test = idx_test[1000:2000]
elif name == 'computers':
dataset = Amazon(root=path, name='Computers')
graph = dataset[0]
num_nodes = graph.num_nodes
edge_index = graph.edge_index
feat = graph.x
labels = graph.y
degree=tlx.convert_to_numpy(graph.out_degree)
num_class = dataset.num_classes
# get nodes of which 0<degree<50
idx_test = [i for i in range(num_nodes) if degree[i] > 0 and degree[i] < 50]
#get 1000 nodes for testing
if name == 'cora':
idx_test = idx_test[1400:2400]
if name == 'citeseer':
idx_test = idx_test[:1000]
if name == 'photo':
idx_test = idx_test[1000:2000]
if name == 'computers':
idx_test = idx_test[2000:3000]
# all nodes for training
if mode == 'full':
idx_train = [i for i in range(num_nodes) if i not in idx_test]
# 50 nodes each class for training
elif mode == 'part':
idx_train = []
for j in range(num_class):
idx_train.extend([i for i,x in enumerate(labels) if x==j and i not in idx_test][:50])
train_mask = np.zeros(shape=[num_nodes],dtype=bool)
train_mask[idx_train] = True
test_mask = np.zeros(shape=[num_nodes],dtype=bool)
test_mask[idx_test] = True
train_mask = tlx.convert_to_tensor(train_mask,dtype=tlx.bool)
test_mask = tlx.convert_to_tensor(test_mask,dtype=tlx.bool)
return edge_index, feat, labels, train_mask, test_mask, degree,num_nodes