-
Notifications
You must be signed in to change notification settings - Fork 918
/
index.html
528 lines (488 loc) · 28.9 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
<!doctype html>
<html style='font-size:15px !important'>
<head>
<meta charset='UTF-8'><meta name='viewport' content='width=device-width initial-scale=1'>
<title>README</title><link href='https://fonts.loli.net/css?family=Open+Sans:400italic,700italic,700,400&subset=latin,latin-ext' rel='stylesheet' type='text/css' /><style type='text/css'>html {overflow-x: initial !important;}:root { --bg-color:#ffffff; --text-color:#333333; --select-text-bg-color:#B5D6FC; --select-text-font-color:auto; --monospace:"Lucida Console",Consolas,"Courier",monospace; }
html { font-size: 14px; background-color: var(--bg-color); color: var(--text-color); font-family: "Helvetica Neue", Helvetica, Arial, sans-serif; -webkit-font-smoothing: antialiased; }
body { margin: 0px; padding: 0px; height: auto; bottom: 0px; top: 0px; left: 0px; right: 0px; font-size: 1rem; line-height: 1.42857; overflow-x: hidden; background: inherit; tab-size: 4; }
iframe { margin: auto; }
a.url { word-break: break-all; }
a:active, a:hover { outline: 0px; }
.in-text-selection, ::selection { text-shadow: none; background: var(--select-text-bg-color); color: var(--select-text-font-color); }
#write { margin: 0px auto; height: auto; width: inherit; word-break: normal; overflow-wrap: break-word; position: relative; white-space: normal; overflow-x: visible; padding-top: 40px; }
#write.first-line-indent p { text-indent: 2em; }
#write.first-line-indent li p, #write.first-line-indent p * { text-indent: 0px; }
#write.first-line-indent li { margin-left: 2em; }
.for-image #write { padding-left: 8px; padding-right: 8px; }
body.typora-export { padding-left: 30px; padding-right: 30px; }
.typora-export .footnote-line, .typora-export li, .typora-export p { white-space: pre-wrap; }
@media screen and (max-width: 500px) {
body.typora-export { padding-left: 0px; padding-right: 0px; }
#write { padding-left: 20px; padding-right: 20px; }
.CodeMirror-sizer { margin-left: 0px !important; }
.CodeMirror-gutters { display: none !important; }
}
#write li > figure:last-child { margin-bottom: 0.5rem; }
#write ol, #write ul { position: relative; }
img { max-width: 100%; vertical-align: middle; image-orientation: from-image; }
button, input, select, textarea { color: inherit; font: inherit; }
input[type="checkbox"], input[type="radio"] { line-height: normal; padding: 0px; }
*, ::after, ::before { box-sizing: border-box; }
#write h1, #write h2, #write h3, #write h4, #write h5, #write h6, #write p, #write pre { width: inherit; }
#write h1, #write h2, #write h3, #write h4, #write h5, #write h6, #write p { position: relative; }
p { line-height: inherit; }
h1, h2, h3, h4, h5, h6 { break-after: avoid-page; break-inside: avoid; orphans: 4; }
p { orphans: 4; }
h1 { font-size: 2rem; }
h2 { font-size: 1.8rem; }
h3 { font-size: 1.6rem; }
h4 { font-size: 1.4rem; }
h5 { font-size: 1.2rem; }
h6 { font-size: 1rem; }
.md-math-block, .md-rawblock, h1, h2, h3, h4, h5, h6, p { margin-top: 1rem; margin-bottom: 1rem; }
.hidden { display: none; }
.md-blockmeta { color: rgb(204, 204, 204); font-weight: 700; font-style: italic; }
a { cursor: pointer; }
sup.md-footnote { padding: 2px 4px; background-color: rgba(238, 238, 238, 0.7); color: rgb(85, 85, 85); border-radius: 4px; cursor: pointer; }
sup.md-footnote a, sup.md-footnote a:hover { color: inherit; text-transform: inherit; text-decoration: inherit; }
#write input[type="checkbox"] { cursor: pointer; width: inherit; height: inherit; }
figure { overflow-x: auto; margin: 1.2em 0px; max-width: calc(100% + 16px); padding: 0px; }
figure > table { margin: 0px; }
tr { break-inside: avoid; break-after: auto; }
thead { display: table-header-group; }
table { border-collapse: collapse; border-spacing: 0px; width: 100%; overflow: auto; break-inside: auto; text-align: left; }
table.md-table td { min-width: 32px; }
.CodeMirror-gutters { border-right: 0px; background-color: inherit; }
.CodeMirror-linenumber { user-select: none; }
.CodeMirror { text-align: left; }
.CodeMirror-placeholder { opacity: 0.3; }
.CodeMirror pre { padding: 0px 4px; }
.CodeMirror-lines { padding: 0px; }
div.hr:focus { cursor: none; }
#write pre { white-space: pre-wrap; }
#write.fences-no-line-wrapping pre { white-space: pre; }
#write pre.ty-contain-cm { white-space: normal; }
.CodeMirror-gutters { margin-right: 4px; }
.md-fences { font-size: 0.9rem; display: block; break-inside: avoid; text-align: left; overflow: visible; white-space: pre; background: inherit; position: relative !important; }
.md-diagram-panel { width: 100%; margin-top: 10px; text-align: center; padding-top: 0px; padding-bottom: 8px; overflow-x: auto; }
#write .md-fences.mock-cm { white-space: pre-wrap; }
.md-fences.md-fences-with-lineno { padding-left: 0px; }
#write.fences-no-line-wrapping .md-fences.mock-cm { white-space: pre; overflow-x: auto; }
.md-fences.mock-cm.md-fences-with-lineno { padding-left: 8px; }
.CodeMirror-line, twitterwidget { break-inside: avoid; }
.footnotes { opacity: 0.8; font-size: 0.9rem; margin-top: 1em; margin-bottom: 1em; }
.footnotes + .footnotes { margin-top: 0px; }
.md-reset { margin: 0px; padding: 0px; border: 0px; outline: 0px; vertical-align: top; background: 0px 0px; text-decoration: none; text-shadow: none; float: none; position: static; width: auto; height: auto; white-space: nowrap; cursor: inherit; -webkit-tap-highlight-color: transparent; line-height: normal; font-weight: 400; text-align: left; box-sizing: content-box; direction: ltr; }
li div { padding-top: 0px; }
blockquote { margin: 1rem 0px; }
li .mathjax-block, li p { margin: 0.5rem 0px; }
li { margin: 0px; position: relative; }
blockquote > :last-child { margin-bottom: 0px; }
blockquote > :first-child, li > :first-child { margin-top: 0px; }
.footnotes-area { color: rgb(136, 136, 136); margin-top: 0.714rem; padding-bottom: 0.143rem; white-space: normal; }
#write .footnote-line { white-space: pre-wrap; }
@media print {
body, html { border: 1px solid transparent; height: 99%; break-after: avoid; break-before: avoid; font-variant-ligatures: no-common-ligatures; }
#write { margin-top: 0px; padding-top: 0px; border-color: transparent !important; }
.typora-export * { -webkit-print-color-adjust: exact; }
html.blink-to-pdf { font-size: 13px; }
.typora-export #write { padding-left: 32px; padding-right: 32px; padding-bottom: 0px; break-after: avoid; }
.typora-export #write::after { height: 0px; }
.is-mac table { break-inside: avoid; }
}
.footnote-line { margin-top: 0.714em; font-size: 0.7em; }
a img, img a { cursor: pointer; }
pre.md-meta-block { font-size: 0.8rem; min-height: 0.8rem; white-space: pre-wrap; background: rgb(204, 204, 204); display: block; overflow-x: hidden; }
p > .md-image:only-child:not(.md-img-error) img, p > img:only-child { display: block; margin: auto; }
#write.first-line-indent p > .md-image:only-child:not(.md-img-error) img { left: -2em; position: relative; }
p > .md-image:only-child { display: inline-block; width: 100%; }
#write .MathJax_Display { margin: 0.8em 0px 0px; }
.md-math-block { width: 100%; }
.md-math-block:not(:empty)::after { display: none; }
[contenteditable="true"]:active, [contenteditable="true"]:focus, [contenteditable="false"]:active, [contenteditable="false"]:focus { outline: 0px; box-shadow: none; }
.md-task-list-item { position: relative; list-style-type: none; }
.task-list-item.md-task-list-item { padding-left: 0px; }
.md-task-list-item > input { position: absolute; top: 0px; left: 0px; margin-left: -1.2em; margin-top: calc(1em - 10px); border: none; }
.math { font-size: 1rem; }
.md-toc { min-height: 3.58rem; position: relative; font-size: 0.9rem; border-radius: 10px; }
.md-toc-content { position: relative; margin-left: 0px; }
.md-toc-content::after, .md-toc::after { display: none; }
.md-toc-item { display: block; color: rgb(65, 131, 196); }
.md-toc-item a { text-decoration: none; }
.md-toc-inner:hover { text-decoration: underline; }
.md-toc-inner { display: inline-block; cursor: pointer; }
.md-toc-h1 .md-toc-inner { margin-left: 0px; font-weight: 700; }
.md-toc-h2 .md-toc-inner { margin-left: 2em; }
.md-toc-h3 .md-toc-inner { margin-left: 4em; }
.md-toc-h4 .md-toc-inner { margin-left: 6em; }
.md-toc-h5 .md-toc-inner { margin-left: 8em; }
.md-toc-h6 .md-toc-inner { margin-left: 10em; }
@media screen and (max-width: 48em) {
.md-toc-h3 .md-toc-inner { margin-left: 3.5em; }
.md-toc-h4 .md-toc-inner { margin-left: 5em; }
.md-toc-h5 .md-toc-inner { margin-left: 6.5em; }
.md-toc-h6 .md-toc-inner { margin-left: 8em; }
}
a.md-toc-inner { font-size: inherit; font-style: inherit; font-weight: inherit; line-height: inherit; }
.footnote-line a:not(.reversefootnote) { color: inherit; }
.md-attr { display: none; }
.md-fn-count::after { content: "."; }
code, pre, samp, tt { font-family: var(--monospace); }
kbd { margin: 0px 0.1em; padding: 0.1em 0.6em; font-size: 0.8em; color: rgb(36, 39, 41); background: rgb(255, 255, 255); border: 1px solid rgb(173, 179, 185); border-radius: 3px; box-shadow: rgba(12, 13, 14, 0.2) 0px 1px 0px, rgb(255, 255, 255) 0px 0px 0px 2px inset; white-space: nowrap; vertical-align: middle; }
.md-comment { color: rgb(162, 127, 3); opacity: 0.8; font-family: var(--monospace); }
code { text-align: left; vertical-align: initial; }
a.md-print-anchor { white-space: pre !important; border-width: initial !important; border-style: none !important; border-color: initial !important; display: inline-block !important; position: absolute !important; width: 1px !important; right: 0px !important; outline: 0px !important; background: 0px 0px !important; text-decoration: initial !important; text-shadow: initial !important; }
.md-inline-math .MathJax_SVG .noError { display: none !important; }
.html-for-mac .inline-math-svg .MathJax_SVG { vertical-align: 0.2px; }
.md-math-block .MathJax_SVG_Display { text-align: center; margin: 0px; position: relative; text-indent: 0px; max-width: none; max-height: none; min-height: 0px; min-width: 100%; width: auto; overflow-y: hidden; display: block !important; }
.MathJax_SVG_Display, .md-inline-math .MathJax_SVG_Display { width: auto; margin: inherit; display: inline-block !important; }
.MathJax_SVG .MJX-monospace { font-family: var(--monospace); }
.MathJax_SVG .MJX-sans-serif { font-family: sans-serif; }
.MathJax_SVG { display: inline; font-style: normal; font-weight: 400; line-height: normal; zoom: 90%; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; }
.MathJax_SVG * { transition: none 0s ease 0s; }
.MathJax_SVG_Display svg { vertical-align: middle !important; margin-bottom: 0px !important; margin-top: 0px !important; }
.os-windows.monocolor-emoji .md-emoji { font-family: "Segoe UI Symbol", sans-serif; }
.md-diagram-panel > svg { max-width: 100%; }
[lang="flow"] svg, [lang="mermaid"] svg { max-width: 100%; height: auto; }
[lang="mermaid"] .node text { font-size: 1rem; }
table tr th { border-bottom: 0px; }
video { max-width: 100%; display: block; margin: 0px auto; }
iframe { max-width: 100%; width: 100%; border: none; }
.highlight td, .highlight tr { border: 0px; }
svg[id^="mermaidChart"] { line-height: 1em; }
mark { background: rgb(255, 255, 0); color: rgb(0, 0, 0); }
.md-html-inline .md-plain, .md-html-inline strong, mark .md-inline-math, mark strong { color: inherit; }
mark .md-meta { color: rgb(0, 0, 0); opacity: 0.3 !important; }
:root {
--side-bar-bg-color: #fafafa;
--control-text-color: #777;
}
@include-when-export url(https://fonts.loli.net/css?family=Open+Sans:400italic,700italic,700,400&subset=latin,latin-ext);
/* open-sans-regular - latin-ext_latin */
/* open-sans-italic - latin-ext_latin */
/* open-sans-700 - latin-ext_latin */
/* open-sans-700italic - latin-ext_latin */
html {
font-size: 16px;
}
body {
font-family: "Open Sans","Clear Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
color: rgb(51, 51, 51);
line-height: 1.6;
}
#write {
max-width: 860px;
margin: 0 auto;
padding: 30px;
padding-bottom: 100px;
}
@media only screen and (min-width: 1400px) {
#write {
max-width: 1024px;
}
}
@media only screen and (min-width: 1800px) {
#write {
max-width: 1200px;
}
}
#write > ul:first-child,
#write > ol:first-child{
margin-top: 30px;
}
a {
color: #4183C4;
}
h1,
h2,
h3,
h4,
h5,
h6 {
position: relative;
margin-top: 1rem;
margin-bottom: 1rem;
font-weight: bold;
line-height: 1.4;
cursor: text;
}
h1:hover a.anchor,
h2:hover a.anchor,
h3:hover a.anchor,
h4:hover a.anchor,
h5:hover a.anchor,
h6:hover a.anchor {
text-decoration: none;
}
h1 tt,
h1 code {
font-size: inherit;
}
h2 tt,
h2 code {
font-size: inherit;
}
h3 tt,
h3 code {
font-size: inherit;
}
h4 tt,
h4 code {
font-size: inherit;
}
h5 tt,
h5 code {
font-size: inherit;
}
h6 tt,
h6 code {
font-size: inherit;
}
h1 {
padding-bottom: .3em;
font-size: 2.25em;
line-height: 1.2;
border-bottom: 1px solid #eee;
}
h2 {
padding-bottom: .3em;
font-size: 1.75em;
line-height: 1.225;
border-bottom: 1px solid #eee;
}
h3 {
font-size: 1.5em;
line-height: 1.43;
}
h4 {
font-size: 1.25em;
}
h5 {
font-size: 1em;
}
h6 {
font-size: 1em;
color: #777;
}
p,
blockquote,
ul,
ol,
dl,
table{
margin: 0.8em 0;
}
li>ol,
li>ul {
margin: 0 0;
}
hr {
height: 2px;
padding: 0;
margin: 16px 0;
background-color: #e7e7e7;
border: 0 none;
overflow: hidden;
box-sizing: content-box;
}
li p.first {
display: inline-block;
}
ul,
ol {
padding-left: 30px;
}
ul:first-child,
ol:first-child {
margin-top: 0;
}
ul:last-child,
ol:last-child {
margin-bottom: 0;
}
blockquote {
border-left: 4px solid #dfe2e5;
padding: 0 15px;
color: #777777;
}
blockquote blockquote {
padding-right: 0;
}
table {
padding: 0;
word-break: initial;
}
table tr {
border-top: 1px solid #dfe2e5;
margin: 0;
padding: 0;
}
table tr:nth-child(2n),
thead {
background-color: #f8f8f8;
}
table tr th {
font-weight: bold;
border: 1px solid #dfe2e5;
border-bottom: 0;
margin: 0;
padding: 6px 13px;
}
table tr td {
border: 1px solid #dfe2e5;
margin: 0;
padding: 6px 13px;
}
table tr th:first-child,
table tr td:first-child {
margin-top: 0;
}
table tr th:last-child,
table tr td:last-child {
margin-bottom: 0;
}
.CodeMirror-lines {
padding-left: 4px;
}
.code-tooltip {
box-shadow: 0 1px 1px 0 rgba(0,28,36,.3);
border-top: 1px solid #eef2f2;
}
.md-fences,
code,
tt {
border: 1px solid #e7eaed;
background-color: #f8f8f8;
border-radius: 3px;
padding: 0;
padding: 2px 4px 0px 4px;
font-size: 0.9em;
}
code {
background-color: #f3f4f4;
padding: 0 2px 0 2px;
}
.md-fences {
margin-bottom: 15px;
margin-top: 15px;
padding-top: 8px;
padding-bottom: 6px;
}
.md-task-list-item > input {
margin-left: -1.3em;
}
@media print {
html {
font-size: 13px;
}
table,
pre {
page-break-inside: avoid;
}
pre {
word-wrap: break-word;
}
}
.md-fences {
background-color: #f8f8f8;
}
#write pre.md-meta-block {
padding: 1rem;
font-size: 85%;
line-height: 1.45;
background-color: #f7f7f7;
border: 0;
border-radius: 3px;
color: #777777;
margin-top: 0 !important;
}
.mathjax-block>.code-tooltip {
bottom: .375rem;
}
.md-mathjax-midline {
background: #fafafa;
}
#write>h3.md-focus:before{
left: -1.5625rem;
top: .375rem;
}
#write>h4.md-focus:before{
left: -1.5625rem;
top: .285714286rem;
}
#write>h5.md-focus:before{
left: -1.5625rem;
top: .285714286rem;
}
#write>h6.md-focus:before{
left: -1.5625rem;
top: .285714286rem;
}
.md-image>.md-meta {
/*border: 1px solid #ddd;*/
border-radius: 3px;
padding: 2px 0px 0px 4px;
font-size: 0.9em;
color: inherit;
}
.md-tag {
color: #a7a7a7;
opacity: 1;
}
.md-toc {
margin-top:20px;
padding-bottom:20px;
}
.sidebar-tabs {
border-bottom: none;
}
#typora-quick-open {
border: 1px solid #ddd;
background-color: #f8f8f8;
}
#typora-quick-open-item {
background-color: #FAFAFA;
border-color: #FEFEFE #e5e5e5 #e5e5e5 #eee;
border-style: solid;
border-width: 1px;
}
/** focus mode */
.on-focus-mode blockquote {
border-left-color: rgba(85, 85, 85, 0.12);
}
header, .context-menu, .megamenu-content, footer{
font-family: "Segoe UI", "Arial", sans-serif;
}
.file-node-content:hover .file-node-icon,
.file-node-content:hover .file-node-open-state{
visibility: visible;
}
.mac-seamless-mode #typora-sidebar {
background-color: #fafafa;
background-color: var(--side-bar-bg-color);
}
.md-lang {
color: #b4654d;
}
.html-for-mac .context-menu {
--item-hover-bg-color: #E6F0FE;
}
#md-notification .btn {
border: 0;
}
.dropdown-menu .divider {
border-color: #e5e5e5;
}
.ty-preferences .window-content {
background-color: #fafafa;
}
.ty-preferences .nav-group-item.active {
color: white;
background: #999;
}
</style>
</head>
<body class='typora-export os-windows' >
<div id='write' class = ''><h1><a name="ml-notes" class="md-header-anchor"></a><span>ML-notes</span></h1><p><a href='https://github.com/Sakura-gh/ML-notes/issues'><img src="https://img.shields.io/github/issues/Sakura-gh/ML-notes?color=ffa07a" referrerpolicy="no-referrer" alt="GitHub issues"></a><span> </span><a href='https://github.com/Sakura-gh/ML-notes/network'><img src="https://img.shields.io/github/forks/Sakura-gh/ML-notes?color=20b2aa" referrerpolicy="no-referrer" alt="GitHub forks"></a><span> </span><a href='https://github.com/Sakura-gh/ML-notes/stargazers'><img src="https://img.shields.io/github/stars/Sakura-gh/ML-notes?color=66cdaa" referrerpolicy="no-referrer" alt="GitHub stars"></a><span> </span><a href='https://github.com/Sakura-gh/ML-notes/blob/master/LICENSE'><img src="https://img.shields.io/github/license/Sakura-gh/ML-notes?color=88cff1" referrerpolicy="no-referrer" alt="GitHub license"></a></p><p><span>notes about machine learning</span></p><p><span>很喜欢一句话:</span><strong><span>应用之道,存乎一心</span></strong><span>,与大家共勉</span></p><p><span>ps:如果我的笔记对你有帮助,给个star叭!查看机器学习笔记的PDF订阅版(</span><strong><span>301页</span></strong><span>)以及更多计算机相关笔记,欢迎大家关注微信公众号"Sakura的知识库"~</span></p><center><img src="https://cdn.jsdelivr.net/gh/Sakura-gh/ML-notes/img/wx.jpg"></center><h5><a name="ml-assignments" class="md-header-anchor"></a><span>ML-Assignments</span></h5><p><span>ML配套Assignments (ppt+code):</span><a href='https://github.com/Sakura-gh/ML-assignments' target='_blank' class='url'>https://github.com/Sakura-gh/ML-assignments</a></p><p><span>内容包括:Regression, Classification, CNN, RNN, Explainable AI, Adversarial Attack, Network Compression, Seq2Seq, GAN, Transfer Learning, Meta Learning, Life-long Learning, Reforcement Learning. </span></p><h5><a name="pages" class="md-header-anchor"></a><span>pages</span></h5><p><span>the github page is: </span><a href='https://Sakura-gh.github.io/ML-notes' target='_blank' class='url'>https://Sakura-gh.github.io/ML-notes</a></p><p><span>you can also visit gitee page for quicker Internet in China: </span><a href='https://Sakura-gh.gitee.io/ml-notes' target='_blank' class='url'>https://Sakura-gh.gitee.io/ml-notes</a></p><h5><a name="html链接" class="md-header-anchor"></a><span>html链接:</span></h5><p><a href=' https://sakura-gh.github.io/ML-notes/ML-notes-html/1_Introduction.html'><span>1_Introduction</span></a></p><p><a href=' https://sakura-gh.github.io/ML-notes/ML-notes-html/2_Regression-Case-Study.html'><span>2_Regression Case Study</span></a></p><p><a href=' https://sakura-gh.github.io/ML-notes/ML-notes-html/3_Regression-demo(Adagrad).html'><span>3_Regression demo(Adagrad)</span></a></p><p><a href='https://sakura-gh.github.io/ML-notes/ML-notes-html/4_Where-does-the-error-come-from.html'><span>4_Where does the error come from</span></a></p><p><a href='https://sakura-gh.github.io/ML-notes/ML-notes-html/5_Gradient-Descent.html'><span>5_Gradient Descent</span></a></p><p><a href='https://sakura-gh.github.io/ML-notes/ML-notes-html/6_Classification.html'><span>6_Classification</span></a></p><p><a href='https://sakura-gh.github.io/ML-notes/ML-notes-html/7_Logistic-Regression.html'><span>7_Logistic Regression</span></a></p><p><a href='https://sakura-gh.github.io/ML-notes/ML-notes-html/8_Deep-Learning.html'><span>8_Deep Learning</span></a></p><p><a href='https://sakura-gh.github.io/ML-notes/ML-notes-html/9_Backpropagation.html'><span>9_Backpropagation</span></a></p><p><a href='https://sakura-gh.github.io/ML-notes/ML-notes-html/10_Keras.html'><span>10_Keras</span></a></p><p><a href='https://sakura-gh.github.io/ML-notes/ML-notes-html/11_Convolutional-Neural-Network-part1.html'><span>11_Convolutional Neural Network part1</span></a></p><p><a href='https://sakura-gh.github.io/ML-notes/ML-notes-html/12_Convolutional-Neural-Network-part2.html'><span>12_Convolutional Neural Network part2</span></a></p><p><a href='https://sakura-gh.github.io/ML-notes/ML-notes-html/13_Tips-for-Deep-Learning.html'><span>13_Tips for Deep Learning</span></a></p><p><a href='https://sakura-gh.github.io/ML-notes/ML-notes-html/14_Why-Deep.html'><span>14_Why Deep</span></a></p><p><a href='https://sakura-gh.github.io/ML-notes/ML-notes-html/15_Semi-supervised-Learning.html'><span>15_Semi-supervised Learning</span></a></p><p><a href='https://sakura-gh.github.io/ML-notes/ML-notes-html/16_Unsupervised-Learning-Introduction.html'><span>16_Unsupervised Learning Introduction</span></a></p><p><a href='https://sakura-gh.github.io/ML-notes/ML-notes-html/17_Unsupervised-Learning-PCA-part1.html'><span>17_Unsupervised Learning PCA part1</span></a></p><p><a href='https://sakura-gh.github.io/ML-notes/ML-notes-html/18_Unsupervised-Learning-PCA-part2.html'><span>18_Unsupervised Learning PCA part2</span></a></p><p><a href='https://sakura-gh.github.io/ML-notes/ML-notes-html/19_Matrix-Factorization.html'><span>19_Matrix Factorization</span></a></p><p><a href='https://sakura-gh.github.io/ML-notes/ML-notes-html/20_Unsupervised-Learning-Word-Embedding.html'><span>20_Unsupervised Learning Word Embedding</span></a></p><p><a href='https://sakura-gh.github.io/ML-notes/ML-notes-html/21_Unsupervised-Learning-Neighbor-Embedding.html'><span>21_Unsupervised Learning Neighbor Embedding</span></a></p><p><a href='https://sakura-gh.github.io/ML-notes/ML-notes-html/22_Unsupervised-Learning-Deep-Auto-encoder.html'><span>22_Unsupervised Learning Deep Auto-encoder</span></a></p><p><a href='https://sakura-gh.github.io/ML-notes/ML-notes-html/23_Unsupervised-Generation.html'><span>23_Unsupervised Learning Generation</span></a></p><p><a href='https://sakura-gh.github.io/ML-notes/ML-notes-html/24_Transfer-Learning.html'><span>24_Transfer Learning</span></a></p><p><a href='https://sakura-gh.github.io/ML-notes/ML-notes-html/25_Support-Vector-Machine.html'><span>25_Support Vector Machine</span></a></p><p><a href='https://sakura-gh.github.io/ML-notes/ML-notes-html/26_Recurrent-Neural-Network-part1.html'><span>26_Recurrent Neural Network part1</span></a></p><p><a href='https://sakura-gh.github.io/ML-notes/ML-notes-html/27_Recurrent-Neural-Network-part2.html'><span>27_Recurrent Neural Network part2</span></a></p><h5><a name="csdn博客链接" class="md-header-anchor"></a><span>csdn博客链接:</span></h5><p><a href='https://blog.csdn.net/weixin_44406200/article/details/104060561'><span>机器学习系列1-机器学习概念及介绍</span></a></p><p><a href='https://blog.csdn.net/weixin_44406200/article/details/104071036'><span>机器学习系列2-回归案例研究</span></a></p><p><a href='https://blog.csdn.net/weixin_44406200/article/details/104075986'><span>梯度下降代码举例:Gradient Descent Demo(Adagrad)</span></a></p><p><a href='https://blog.csdn.net/weixin_44406200/article/details/104088554'><span>机器学习系列4-模型的误差来源及减少误差的方法</span></a></p><p><a href='https://blog.csdn.net/weixin_44406200/article/details/104256006'><span>机器学习系列5-梯度下降法</span></a></p><p><a href='https://blog.csdn.net/weixin_44406200/article/details/104272160'><span>机器学习系列6-分类问题(概率生成模型)</span></a></p><p><a href='https://blog.csdn.net/weixin_44406200/article/details/104288916'><span>机器学习系列7-逻辑回归</span></a></p><p><a href='https://blog.csdn.net/weixin_44406200/article/details/104299958'><span>机器学习系列8-深度学习简介</span></a></p><p><a href='https://blog.csdn.net/weixin_44406200/article/details/104310991'><span>机器学习系列9-反向传播</span></a></p><p><a href='https://blog.csdn.net/weixin_44406200/article/details/104328947'><span>机器学习系列10-手写数字识别(Keras2.0)</span></a></p><p><a href='https://blog.csdn.net/weixin_44406200/article/details/104370738'><span>机器学习系列11-卷积神经网络CNN part1</span></a></p><p><a href='https://blog.csdn.net/weixin_44406200/article/details/104392592'><span>机器学习系列12-卷积神经网络CNN part2</span></a></p><p><a href='https://blog.csdn.net/weixin_44406200/article/details/104430737'><span>机器学习系列13-深度学习的技巧和优化方法</span></a></p><p><a href='https://blog.csdn.net/weixin_44406200/article/details/104452873'><span>机器学习系列14-为什么要做“深度”学习</span></a></p><p><a href='https://blog.csdn.net/weixin_44406200/article/details/106991717'><span>机器学习系列15-半监督学习</span></a></p><p><a href='https://blog.csdn.net/weixin_44406200/article/details/107029531'><span>机器学习系列16-无监督学习引言</span></a></p><p><a href='https://blog.csdn.net/weixin_44406200/article/details/107082637'><span>机器学习系列17-无监督学习之PCA推导(Ⅰ)</span></a></p><p><a href='https://blog.csdn.net/weixin_44406200/article/details/107082680'><span>机器学习系列18-无监督学习之PCA深入探讨(Ⅱ)</span></a></p><p><a href='https://blog.csdn.net/weixin_44406200/article/details/107099894'><span>机器学习系列19-矩阵分解&推荐系统初步</span></a></p><p><a href='https://blog.csdn.net/weixin_44406200/article/details/107168089'><span>机器学习系列20-无监督学习之词嵌入</span></a></p><p><a href='https://blog.csdn.net/weixin_44406200/article/details/107305230'><span>机器学习系列21-无监督学习之近邻嵌入</span></a></p><p><a href='https://blog.csdn.net/weixin_44406200/article/details/107305267'><span>机器学习系列22-无监督学习之自编码器</span></a></p><p><a href='https://blog.csdn.net/weixin_44406200/article/details/107305305'><span>机器学习系列23-无监督学习之生成模型</span></a></p><p><a href='https://blog.csdn.net/weixin_44406200/article/details/107305326'><span>机器学习系列24-迁移学习</span></a></p><p><a href='https://blog.csdn.net/weixin_44406200/article/details/107693177'><span>机器学习系列25-支持向量机</span></a></p><p><a href='https://blog.csdn.net/weixin_44406200/article/details/107693331'><span>机器学习系列26-循环神经网络RNN(Ⅰ)</span></a></p><p><a href='https://blog.csdn.net/weixin_44406200/article/details/107812374'><span>机器学习系列27-循环神经网络RNN(Ⅱ)</span></a></p><h5><a name="代码链接" class="md-header-anchor"></a><span>代码链接:</span></h5><p><a href=' https://sakura-gh.github.io/ML-notes/code/Gradient-Descent-Demo/Gradient-Descent-Demo.html'><span>Gradient Descent Demo(Adagrad)</span></a></p><p><a href='https://github.com/Sakura-gh/ML-notes/blob/master/code/Digits-Detection/digits-detection.py'><span>手写数字识别(Keras2.0)</span></a></p><p><a href='https://github.com/Sakura-gh/ML-notes/blob/master/code/Digits-Detection/digits-detection-cnn.py'><span>手写数字识别CNN实现(Keras2.0)</span></a></p><p><a href='https://github.com/Sakura-gh/ML-notes/blob/master/keras-tips.md'><span>Keras实战小经验</span></a></p><p><a href='https://github.com/Sakura-gh/ML-notes/blob/master/code/pytorch'><span>PyTorch简易入门</span></a></p><h5><a name="license" class="md-header-anchor"></a><span>LICENSE:</span></h5><p><span>GPL-2.0</span></p><h5><a name="温馨提示" class="md-header-anchor"></a><span>温馨提示:</span></h5><p><span>图片加载可能会有些许缓慢,请耐心等待</span><span>\</span><span>(</span><span>^</span><span>o</span><span>^</span><span>)/</span></p><h5><a name="赞赏作者" class="md-header-anchor"></a><span>赞赏作者:</span></h5><p><span>如果读后有收获,请作者喝杯咖啡吧,您的支持就是我最大的更新动力~ </span></p><center><img src="https://cdn.jsdelivr.net/gh/Sakura-gh/ML-notes/img/zs.png" width="60%"></center><h5><a name="pdf订阅版" class="md-header-anchor"></a><span>PDF订阅版:</span></h5><p><span>关注公众号“Sakura的知识库”可订阅:</span></p><center><img src="https://cdn.jsdelivr.net/gh/Sakura-gh/ML-notes/img/ml-book.png" width="80%"></center><h5><a name="ml-gpu" class="md-header-anchor"></a><span>ML GPU:</span></h5><center><a href="https://tracking.gitads.io/?repo=ML-notes"><img src="https://images.gitads.io/ML-notes" width="80%" alt="GitAds"></a></center></div>
</body>
</html>