forked from cloudflare/circl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
curve.go
96 lines (89 loc) · 2.96 KB
/
curve.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
package x25519
import (
fp "github.com/cloudflare/circl/math/fp25519"
)
// ladderJoye calculates a fixed-point multiplication with the generator point.
// The algorithm is the right-to-left Joye's ladder as described
// in "How to precompute a ladder" in SAC'2017.
func ladderJoye(k *Key) {
w := [5]fp.Elt{} // [mu,x1,z1,x2,z2] order must be preserved.
fp.SetOne(&w[1]) // x1 = 1
fp.SetOne(&w[2]) // z1 = 1
w[3] = fp.Elt{ // x2 = G-S
0xbd, 0xaa, 0x2f, 0xc8, 0xfe, 0xe1, 0x94, 0x7e,
0xf8, 0xed, 0xb2, 0x14, 0xae, 0x95, 0xf0, 0xbb,
0xe2, 0x48, 0x5d, 0x23, 0xb9, 0xa0, 0xc7, 0xad,
0x34, 0xab, 0x7c, 0xe2, 0xee, 0xcd, 0xae, 0x1e,
}
fp.SetOne(&w[4]) // z2 = 1
const n = 255
const h = 3
swap := uint(1)
for s := 0; s < n-h; s++ {
i := (s + h) / 8
j := (s + h) % 8
bit := uint((k[i] >> uint(j)) & 1)
copy(w[0][:], tableGenerator[s*Size:(s+1)*Size])
diffAdd(&w, swap^bit)
swap = bit
}
for s := 0; s < h; s++ {
double(&w[1], &w[2])
}
toAffine((*[fp.Size]byte)(k), &w[1], &w[2])
}
// ladderMontgomery calculates a generic scalar point multiplication
// The algorithm implemented is the left-to-right Montgomery's ladder.
func ladderMontgomery(k, xP *Key) {
w := [5]fp.Elt{} // [x1, x2, z2, x3, z3] order must be preserved.
w[0] = *(*fp.Elt)(xP) // x1 = xP
fp.SetOne(&w[1]) // x2 = 1
w[3] = *(*fp.Elt)(xP) // x3 = xP
fp.SetOne(&w[4]) // z3 = 1
move := uint(0)
for s := 255 - 1; s >= 0; s-- {
i := s / 8
j := s % 8
bit := uint((k[i] >> uint(j)) & 1)
ladderStep(&w, move^bit)
move = bit
}
toAffine((*[fp.Size]byte)(k), &w[1], &w[2])
}
func toAffine(k *[fp.Size]byte, x, z *fp.Elt) {
fp.Inv(z, z)
fp.Mul(x, x, z)
_ = fp.ToBytes(k[:], x)
}
var lowOrderPoints = [5]fp.Elt{
{ /* (0,_,1) point of order 2 on Curve25519 */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
},
{ /* (1,_,1) point of order 4 on Curve25519 */
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
},
{ /* (x,_,1) first point of order 8 on Curve25519 */
0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae,
0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a,
0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd,
0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, 0x00,
},
{ /* (x,_,1) second point of order 8 on Curve25519 */
0x5f, 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24,
0xb1, 0xd0, 0xb1, 0x55, 0x9c, 0x83, 0xef, 0x5b,
0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86,
0xd8, 0x22, 0x4e, 0xdd, 0xd0, 0x9f, 0x11, 0x57,
},
{ /* (-1,_,1) a point of order 4 on the twist of Curve25519 */
0xec, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f,
},
}