Skip to content

Latest commit

 

History

History
71 lines (51 loc) · 2.06 KB

README.md

File metadata and controls

71 lines (51 loc) · 2.06 KB

PEGS Evaluation

Validation and scoring scripts for Task 1 of the PEGS Challenge. For Task 2, see writeup-workflow/.

Metrics returned and used for ranking are:

  • Primary: area under the receiver operating characteristic curve (AUROC)

  • Secondary (used for ties): area under the precision-recall curve (AUPRC)

🐍 Using Python

Validate

python validate.py \
  -p PATH/TO/PREDICTIONS_FILE.CSV \
  -g PATH/TO/GOLDSTANDARD_FOLDER [-o RESULTS_FILE]

If -o/--output is not provided, then full results will output to results.json.

What it will check for:

  • two columns named id and disease_probability (extraneous columns will be ignored)
  • id values are strings
  • disease_probability values are floats between 0.0 and 1.0, and cannot be null/None
  • there is one prediction per patient (so, no missing patient IDs or duplicate patient IDs)
  • there are no extra predictions (so, no unknown patient IDs)

The script will either print to STDOUT, VALIDATED or INVALID.

Score

python score.py \
  -p PATH/TO/PREDICTIONS_FILE.CSV \
  -g PATH/TO/GOLDSTANDARD_FOLDER [-o RESULTS_FILE]

If -o/--output is not provided, then results will output to results.json.

The script will either print to STDOUT, SCORED or INVALID.

🐳 Using Docker

Results will be outputted to output/results.json in your current working directory (assuming you mount $PWD/output).

Validate

docker run --rm \
  -v /PATH/TO/PREDICTIONS_FILE.CSV:/predictions.csv:ro \
  -v /PATH/TO/GOLDSTANDARD_FOLDER:/goldstandard:ro \
  -v $PWD/output:/output:rw \
  ghcr.io/sage-bionetworks-challenges/pegs-evaluation:latest \
  python3 validate.py \
  -p /predictions.csv -g /goldstandard -o /output/results.json

Score

docker run --rm \
  -v /PATH/TO/PREDICTIONS_FILE.CSV:/predictions.csv:ro \
  -v /PATH/TO/GOLDSTANDARD_FOLDER:/goldstandard:ro \
  -v $PWD/output:/output:rw \
  ghcr.io/sage-bionetworks-challenges/pegs-evaluation:latest \
  python3 score.py \
  -p /predictions.csv -g /goldstandard -o /output/results.json