-
Go to the one of example models folder:
- r-simple: [R] model by multiplying random numbers
- r-magic: [R] model using
Rmagic
package from MAGIC - py-deepimpute: [Python] model using deepimpute
-
Build the Docker image
docker.synapse.org/<synapse-project-id>/<model-name>:<image-tag>
, like the following command:# in an example model folder docker build -t docker.synapse.org/syn123/example-model-task1:v1 .
-
Find your training data. You could use seurat_pbmc3k_counts.csv, which is the count matrix from Seurat PBMC 3k dataset.
-
Create an
output
foldermkdir output
-
Run the dockerized model.
docker run \ -v $PWD/<training-data-folder>/:/input:ro \ -v $PWD/output:/output:rw \ docker.synapse.org/syn123/example-model-task1:v1
-
The imputed files (*_imputed.csv) should be saved to
output/
.$ ls output/*_imputed.csv
If your model meets the requirements and it can be pushed up to your project on Synapse. Please see the instructions on how to submit the model to synapse. Then submit it to the Task 1 of the DREAM Challenge.